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Abstract: Let k € N. We prove that a graph G with no (k + 1)-clique minor is k-colorable. The
problem is well-known (see e.g. [5]). It was posed by H. Hadwiger in 1943. The case that k = 4
is equivalent to four-color theorem (see [6]). Our problem is deeply fundamental and almost no

known concepts may succeed to make a solution. We thus use a nondeterministic algorithm, from

which the proof is critically simplified.
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1 Introduction
Let k € N. We prove the following theorem:

Theorem 1 (Hadwiger conjecture). A graph G with
no (k + 1)-clique minor is k-colorable.

The problem is well-known (see e.g. [5]). It was
posed by H. Hadwiger in 1943. The case that k <5 is
proved (see [3], [1], [2], [4]) and the case that k =4 is
equivalent to the celebrated four-color theorem, which
states that every planar map is four colorable (see [6]).
Theorem 1 is deeply basic and almost no known con-
cepts may succeed to give a solution. We thus use a
nondeterministic algorithm, which critically simplifies
the proof.

2 Proof of Theorem 1

Let x(G) be the chromatic number of G. Let h(G)
be the Hadwiger number of G.

Proof of Theorem 1. 1t is proved by induction on the
number of the vertices involved (the ones adjacent to
P involved) that if there exists a vertex P such that P
and x—1 vertices of G adjacent to P are of the number
of the minimal colors equal to x then they (i.e. the
X — 1 vertices of G adjacent to P) are connected one
another by paths in S, where S is a graph obtained
from G by deleting P, and the paths are not by way
of the other vertices among themselves and without
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common vertices in each pair.

From above it is easy to prove that we may obtain
a x(G)-clique by taking minors of G. Thus x(G) <
h(G). The assertion follows. O
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