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Abstract: This paper aims to raise the accuracy of multi-class text classification by means of
graph-based semi-supervised learning (GBSSL). It is essential to construct a proper graph express-
ing the relation among nodes in GBSSL. We propose a method to construct a similarity graph by
employing both surface information and latent information to express similarity between nodes.
Experimenting on Reuters-21578 corpus, we have confirmed that our proposed method works well
for raising the accuracy of GBSSL in multi-class text classification task.

1 序論
機械学習手法は，教師あり学習，教師なし学習，半教

師あり学習などがある．半教師あり学習 (Semi-Supervised
Learning: SSL)法は，少量のラベルありデータを用い
て，多量のラベルなしデータに付与するラベルを予測
する手法である．その中でも，グラフ構造に基づく半教
師あり学習 (Graph-Based Semi-Supervised Learning:
GBSSL)法は，文書分類タスクにおいて，Support Vec-
tor Machine (SVM)[2]などの学習法と比べてより有効
な手法であることが知られている [4]．

GBSSL 法の精度は，一方でどのような教師データ
(ラベルありデータ)を与えるかによって左右され，他
方で，どのようなグラフを構成するかによって左右され
ることが分かっている [7, 9]．前者に関連して重要とな
るのが，どのようにして情報量の大きいデータを選出
するかである．その良い事例が能動学習法であり，質の
高い教師データを選出するための方法である．GBSSL
法の精度を改善するため，いくつかの能動学習法が提
案されている [7, 10]．また，後者に関連して重要とな
るのは，グラフのノード間の関係性をどのように表現
するかである [9]．一般に，GBSSL法のグラフスパー
ス化手法には，k-近傍グラフが用いられることが多い．
しかしながら，k-近傍グラフではその構成上，ハブ点
と呼ばれる高次数のノードができやすく，このハブ点
は GBSSL法の精度を悪化させるということが報告さ
れている [11]．ノードに次数制約を設けた，グラフス
パース化手法もまたいくつか提案されている [11, 12]．
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本研究では，GBSSL 法を用いた多クラス文書分類
におけるグラフ構成手法の提案を行う．グラフ構成に
おいて，必須の要件であるノード間の類似度に，文書
間の潜在的な類似度を新たに取り入れる．一般にこれ
まで，テキストデータから構成されるグラフにおいて
は，単語の頻度情報に基づく文書間の表層的な類似度
が多く採用されてきたが，我々はこれに加えて新たに，
確率的言語モデルに基づく文書間の潜在的な類似度を
加えたものをノード間の類似度として採用する．また，
これら表層的な類似度と潜在的な類似度を (1 − α) : α

(0 ≤ α ≤ 1)の割合で混合させ，αをパラメータとして
動かし，両情報を同時に採用する．
上記手法をマルチラベルを有するテキストのカテゴ

リ分類に適用し，精度 PRBEPを算出し，我々の手法
の有効性を各カテゴリ毎に評価し，かつ，それら全体
の精度の向上を検討する．

2 文書分類のためのGBSSL手法
本研究で提示する，多クラス文書分類のタスクにお

ける GBSSL 法の詳細は，以下に述べる通りである．

2.1 グラフ構成
本研究におけるグラフ構成は，テキストデータを対

象にして行う．したがって，各文書はグラフのノード
とみなされる．そのノード (文書)間の関係は類似度と
して表され，その類似度をグラフの辺の重みとするよ
うな重み付き無向グラフG = (V, E)を構成する．ここ
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でVと Eは，それぞれグラフのノード集合と辺集合を
表す．
グラフ G は隣接行列 W の形で表現することがで

き，wij ∈ W はノード i，ノード j 間の類似度を表
すとする．特に，GBSSL 法の場合には，その類似度
はノード i の k-近傍点集合 K(i) からなるものとし，
wij = sim(xi, xj) ∗ δ(j ∈ K(i))とする．ここで，δ(z)
は zが真ならば 1，偽ならば 0とする．

2.2 グラフにおける類似度
テキストデータにおける文書間の類似度を測る指標

として，表層情報に基づく類似度と潜在情報に基づく
類似度の二種類の類似度を採用する．文書の表層情報
としては，文書に含まれる単語の出現頻度に着目した
tfidfベクトル [3]が多く用いられる．ここでは，表層情
報に基づく類似度 (simsurface)を，tfidfベクトルのコ
サイン類似度の値とする．また，文書の潜在情報とし
て，複数文書内に隠れトピックが存在することを仮定
し，その隠れトピックに関して生起する単語の確率分
布 (トピック分布)を用いる．ここでは，潜在情報に基
づく類似度 (simlatent)を，シグモイド関数 (式 (4)))を
用いて，トピック分布間の距離を類似度に変換したも
のとする．トピック分布間の距離は L2ノルム距離 (式
(5))を用いて求める．トピック分布の推定には，Latent
Dirichlet Allocation (LDA)法 [1]を用いる．
本研究では，この従来の類似度 (simsurface)に新た

に，文書の持つ潜在情報に基づいた類似度 (simlatent)
を α (0 ≤ α ≤ 1)の割合で付加する．これら simlatent

と simsurfaceを α : (1− α) (0 ≤ α ≤ 1)の割合で合算
した値を，ノード間 (すなわち，文書 Sと文書T間)の
類似度 (simnodes)とする (式 (1))．Pと Qは，それぞ
れ文書 Sと文書 Tに対するトピック分布を表す．

simnodes(S, T ) ≡ α ∗ simlatent(P, Q)

+(1 − α) ∗ simsurface(S, T ) (1)

simsurface(S, T ) = cos(tfidf(S), tfidf(T )) (2)

simlatent(P, Q) =
2

1 + expL2(P,Q)
(3)

σ1(x) =
1

1 + exp−x
(4)

L2(P, Q) =
∫

(P (x) − Q(x))2dx (5)

2.3 ラベル伝搬法
本研究におけるGBSSL法として，ラベル伝搬法 [5, 8]

を採用する．ラベル伝搬法は，「グラフ上において，辺

で繋がるノード同士は同じカテゴリに属す」という仮
定に基づき，カテゴリラベル未知のノード (すなわち，
テストデータ)について予測を行う手法である．
類似度行列をW，ノード数を n 個 (このうち教師

データ数は l個)とする．n個のノードに対する予測値
f は，以下の最適化問題の目的関数 (式 (6)) の解 (式
(8))として求まる．式 (6)の第 1項は，各ノードの予
測値と教師データの正解値の差を表し，第 2項は，類
似度グラフ上で隣接するノード同士の予測値の差を表
す．λ(> 0)は両項のバランスをとる定数である．
式 (6)はLを用いて，式 (7)と変形できる．L(≡ D−

W )はラプラシアン行列と呼ばれ，対角行列DはW

の各行 (又は列)の和を対角成分に持つ行列である．

J(f) =
l∑

i=1

(y(i) − f (i))2

+λ
∑

i<j

w(i,j)(f (i) − f (j))2 (6)

= ||y − f ||22 + λfT Lf (7)

f = (I + λL)−1y (8)

3 実験
3.1 実験仕様
テキスト分類問題の対象データには，Reuters-21578

(Reuters)1 を用いる．Reutersは 135のトピックカテ
ゴリからなる Reuters newswire の英文記事を集めた
データセットである．本実験では “ModApte”分割に
従って，本文とタイトルのみからなる記事データを抽
出し，全データに対してストップワードの除去とステ
ミング処理を行う．その後，同じデータセットを用い
て GBSSL手法でマルチラベル文書分類を行っている
Subramanyaら [4]の実験仕様に合わせ，10種のカテ
ゴリ earn，acq，money-fx，grain，crude，trade，
interest，ship，wheat，cornに対する分類精度を求
める．Reutersの記事データはマルチラベルを有する
ため，ここでは各カテゴリ毎に one-versus-rest法を適
用した二値分類を行い，一定の閾値以上のカテゴリラ
ベルを文書に付与するラベルとして採用する．
データセットは，テストデータ (ラベルなしデータ)u =

3299個を共通とし，これに教師データ l = 20個を加え
たものを 16セット用意する．データセットに含まれる
データ総数は n = 3319個である．教師データとして
加えるカテゴリは，上記 10種のカテゴリにそれら以外
のカテゴリ (others)を加えた全 11種とする．データ

1http://www.daviddlewis.com/resources/testcollections/
reuters21578/
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セットに加える教師データ l個のカテゴリは 11種のカ
テゴリからランダムに選択するが，全 11種のカテゴリ
の教師データが少なくとも 1個ずつ含まれるように選
択する．
グラフ構成の際に求める，潜在トピックの推定方法

には，崩壊型ギブスサンプリングを用い，その反復回
数は 200回とする．最適トピック数はパープレキシティ
の値を算出し，その 5回平均の値で決定する．α = 0
のときは文書の表層情報のみを扱うため，推定を行う
必要がない．このため，類似度が一意的に決まる．他
方，α != 0のときは文書の潜在トピックの推定を行う
ため，類似度が一意的に決まらない．このため，5回平
均した値を用いることとする．ノード間の類似度にお
けるパラメータ αは [0, 1]の範囲を 0.1刻みで動かす．
ラベル伝搬法で用いた類似度グラフのノード数は

|V | = n(= 3319)である．k-近傍グラフの大きさのパラ
メータ kは {2, 10, 50, 100, 250, 500, 1000, 2000, n}，ラ
ベル伝搬法のパラメータλは {1, 0.1, 0.01, 1e−4, 1e−8}
の範囲を動かす．15セット中 5つのデータセットによっ
て，各カテゴリに対する最適パラメータ (k, λ)の組を決
定した後，それらのパラメータの値を用いて，残り 10セ
ットに対して文書分類を行い，各カテゴリ毎にPRBEP
を求め，各試行毎の各カテゴリに対する PRBEPの平
均値を算出する．指標 PRBEPは，Precision(適合率)
と Recall(再現率)が一致するときの値である．

3.2 実験結果
[0, 1]における 0.1刻み毎の各 αの値に対して，カテ

ゴリ毎に決定した最適パラメータ (k, λ)を表 1に示す．
各カテゴリに対し，これらの最適パラメータを用いて
行った実験結果を図 1～10に示す．横軸は αの値を表
し，縦軸は PRBEPの値を表す．図 1～10は，各 αの
値に対して行った 10回の試行の各カテゴリPRBEPの
平均値を示している．各 α毎に全カテゴリの PRBEP
を合算して求め，その平均値の変移を図 11に示す．図
12，13は α = 0, 0.2, 1のときの，カテゴリ毎のテスト
データ数とその PRBEP との相関関係を表している．
横軸は各カテゴリに含まれるテストデータの数を表し，
縦軸は PRBEPの値を表す．青の点線，黒の実線そし
て赤の一点鎖線は，それぞれ α = 0, 0.2, 1のときの結
果を表す．
図 1～11において，α = 0の場合は，表層情報のみ

を用いた場合の結果であり，本研究におけるベースラ
インである．また，α = 1の場合は，潜在情報のみを用
いた場合の結果である．それ以外 (α != 0または 1)は，
潜在情報と表層情報を一定の割合 (α : (1 − α))で混合
した場合であり，両情報を用いた結果を示している．
まず，図 1～10に関連しては次の通りである．α = 0

の時よりも，α != 0の時の PRBEPが必ず大きい値を

とるのは，図 1, 2, 3, 6, 7, 8である．他方，逆に α = 0
の時よりも，α != 0の時の PRBEPが αの値によって
小さい値をとるのは，図 4, 5, 9, 10である．
次に，図 11 からは以下のことが分かる．マクロ平

均値の最大値は 51.0 (α = 0.2)であり，最小値は 44.5
(α = 1)である．ただし，α = 0の時の値は 45.2であ
る．したがって，最大マクロ平均値 51.0 (α = 0.2)は
α = 1 の時より 6.5%高く，更にベースラインである
α = 0の時より 5.9%高いことが分かる．また，α = 0
～0.2の時，マクロ平均値は単調増加しており (45.2→
51.0)，α = 0.2以上では，マクロ平均値は単調減少し
ている (51.0→ 44.5)．
図 12, 13は，α = 0, 1，並びにマクロ平均値で最大値

をとる α = 0.2における，各カテゴリのテストデータ
数とその精度の相関関係を表している．テストデータ
数の多いカテゴリほど，潜在トピックを考慮した α != 0
における精度は改善されていることが分かる．しかし
ながら，データ数が 200個以下であるカテゴリにおい
ては必ずしも同様の改善傾向は見られない．

4 考察
図 1～10の各図において，PRBEPが最大値をとる

時の αの値は各カテゴリ毎に異なっており，一律では
ない．故に，精度が最大となる時の，αの値 (すなわち
表層情報と潜在情報の混合割合)を一意的に決めること
は難しい．しかしながら，半数以上のカテゴリにおい
ては，α = 0に対して α != 0のときの PRBEPは増加
傾向を示しており，残りのカテゴリにおいても，適切
な αが求まりさえすれば全てのカテゴリにおいてベー
スラインを超えることが分かる．
図 11は，全カテゴリのマクロ平均 PRBEPを示し

ている．α = 1を除いた全ての α != 0において，ベー
スラインである α = 0 の時のマクロ平均値よりも高
くなっている．特に，各 αをベースラインと比較する
と，α = 0.1, 0.2, 0.3, 0.4, 0.5 のとき，t 検定によって
5%有意でベースラインに対して精度向上があることが
分かった．
図 12, 13からは，ノード間の類似度に文書間の潜在

トピックを考慮することがGBSSLの精度改善に繋がる
ことが期待され、それは特に各カテゴリのデータ数が
十分多量にあるときであるということが期待される．カ
テゴリwheat, cornにおいて，α = 0に対して α = 1
のときの PRBEPが著しく悪化したのは，これらのカ
テゴリにおけるテストデータが少量であるため，LDA
による十分なトピック推定が行えなかったためだと考
えられる．
以上のことから，GBSSL法のグラフ構成としては，

表層情報のみを用いるよりも潜在情報も加えた両情報を
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表 1: カテゴリ毎の最適パラメータ (k, λ)

!!!!!!!!カテゴリ
α

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

earn (50, 1) (1000, 1) (1000, 1) (1000, 1) (1000, 1) (1000, 1) (1000, 1) (1000, 1) (1000, 1) (1000, 1) (1000, 1)
acq (500, 0.1) (250, 0.1) (250, 0.01) (100, 0.01) (100, 1e-8) (50, 0.1) (10, 1e-8) (10, 1e-8) (10, 1e-4) (250, 0.01) (500, 1e-4)

money-fx (2, 1) (2, 1) (10, 0.1) (2, 0.1) (2, 1) (2, 1) (50, 1e-4) (50, 0.01) (2, 1e-8) (50, 0.01) (10, 0.1)
grain (100, 0.1) (50, 1) (50, 1) (10, 1) (50, 1e-8) (10, 1) (10, 1) (50, 1e-8) (50, 1e-8) (50, 1) (50, 1)
crude (10, 1) (50, 0.1) (50, 0.01) (100, 1e-8) (10, 0.01) (10, 1e-8) (50, 1e-8) (2, 1e-4) (50, 1e-8) (2, 1e-8) (50, 1e-8)
trade (10, 1) (10, 1e-8) (10, 1e-8) (10, 1e-4) (10, 1e-8) (10, 1e-4) (10, 1e-8) (2, 0.01) (10, 1e-8) (10, 1e-8) (10, 0.1)

interest (10, 0.1) (10, 1) (10, 0.1) (10, 1e-8) (10, 1) (10, 1) (10, 1) (10, 1) (10, 1) (100, 1e-8) (100, 1e-8)
ship (10, 1) (100, 1e-8) (50, 0.1) (10, 1e-8) (10, 0.1) (10, 0.1) (10, 0.1) (10, 0.1) (2, 1) (10, 0.1) (10, 0.1)
wheat (100, 0.01) (100, 1e-8) (100, 1e-8) (50, 1e-4) (50, 1e-4) (50, 1e-4) (100, 1e-8) (50, 1e-8) (50, 1e-8) (50, 1e-8) (50, 1e-8)
corn (10, 1) (10, 1) (10, 1) (10, 1) (10, 1) (10, 0.01) (10, 0.01) (10, 0.1) (10, 0.1) (2, 1e-8) (10, 1e-8)

図 1: earnの平均 PRBEP 図 2: acqの平均 PRBEP 図 3: money-fxの平均 PRBEP

図 4: grainの平均 PRBEP 図 5: crudeの平均 PRBEP 図 6: tradeの平均 PRBEP

図 7: interestの平均 PRBEP 図 8: shipの平均 PRBEP 図 9: wheatの平均 PRBEP
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図 10: cornの平均 PRBEP 図 11: 全カテゴリのマクロ平均 PRBEP

図 12: 各カテゴリにおけるテストデータ数とPRBEPとの相関関係．α = 0, 0.2, 1における，カテゴリ earn，acq，
money-fxのテストデータ数 (横軸)と PRBEP(縦軸)

図 13: 各カテゴリにおけるテストデータ数とPRBEPとの相関関係．α = 0, 0.2, 1における，カテゴリmoney-fx，
grain，crude，trade，interest，ship，wheat，cornのテストデータ数 (横軸)と PRBEP(縦軸)
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用いる方がGBSSL法の精度は向上することが分かる．
また，十分なデータ数があるときのみ，潜在情報によ
る精度向上への寄与率が上がることも期待される．し
たがって，両情報の混合割合 αの最適値が求まり，各
カテゴリそれぞれにおいて十分な量のテストデータが
ありさえすれば，単に表層情報や潜在情報のみを用い
る場合よりも，高い精度が得られるだろう．

5 結論
我々は，表層情報と潜在情報に基づく類似度グラフ

の構成法を提案した．マルチラベルを有する Reuters-
21578コーパスを用いた実験の結果から，GBSSL法に
おけるグラフ構成では表層情報と潜在情報のどちらか
だけを用いるよりも，両情報を混合させて同時に用い
た方が GBSSL法における文書分類の精度を向上させ
ることが分かった．
今後の課題としては，我々が今回得た結論 (表層情報

と潜在情報の両情報を用いる方がそれらを単体で用い
るよりも精度が高い)を他のデータセットを用いて検証
することであり，グラフスパース化手法などの工夫を
行うことなどを通して更なる精度の向上を図ることで
ある．

参考文献
[1] Blei, D. M., Ng, A. Y., Jordan, M. I.: Latent

dirichlet allocation, Journal of Machine Learning
Research (2003)

[2] Cortes, C., Vapnik, V.: Support-vector networks,
Machine Learning,20: 273-297 (1995)

[3] Salton, G., McGill, J.: Introduction to Modern
Information Retrieval, McGraw-Hill (1983)

[4] Subramanya, A., Bilmes, J.: Soft-Supervised
Learning for Text Classification, in Proc. of the
2008 Conference on Empirical Methods in Natu-
ral Language Processing, pp.1090–1099 (2008)

[5] Zhou, D., Bousquet, O., Lal, T. N., Weston J.,
Schölkopf B.: Learning with Local and Global
Consistency, in NIPS 16 (2004)

[6] Zhu, X., Ghahramani, Z.: Learning from La-
beled and Unlabeled Data with Label Propaga-
tion, Technical report, Carnegie Mellon Univer-
sity (2002)

[7] Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-
Supervised Learning Using Gaussian Fields and
Harmonic Functions, in Proc. of the Interna-
tional Conference on Machine Learning (ICML)
(2003)

[8] Zhu, X., Ghahramani, Z., Lafferty, J. Semi-
supervised learning using Gaussian fields and
harmonic functions, In ICML (2003)

[9] Zhu, X.: Semi-Supervised Learning with Graphs,
PhD thesis, Carnegie Mellon University (2005)

[10] Gu, Q. and Han, J.: Towards Active Learning
on Graphs: An Error Bound Minimization Ap-
proach, Data Mining, IEEE International Con-
ference (2012)

[11] Ozaki, K., Shimbo, M., Komachi, M. and Mat-
sumoto, Y.: Using the mutual k-nearest neighbor
graphs for semi-supervised classification of natu-
ral language Data, Proceedings of the Fifteenth
Conference on Computational Natural Language
Learning (2011)

[12] Jebara, T., Wang, J. and Chang, S.: Graph
construction and b-matching for semi-supervised
learning, Proceedings of the 26th Annual Inter-
national Conference on Machine Learning (2009)

　　　　　　 人工知能学会　インタラクティブ 
情報アクセスと可視化マイニング研究会(第4回) 
　　　　　　　　　　　　　　 SIG-AM-04-04

28-　　　-


