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Abstract: Distributional representation for words is an important model of word senses which

reflects several types of semantic relations, not only similarity relations. In this paper, we provide an

overview of unsupervised/supervised approaches with word distributional representations to detect

hypernym-hyponym relations and a recently reported problem associated with these approaches.

Moreover, we propose a future research direction to solve this problem and prove the validity of

this direction with small experiments.

1 はじめに

語の分散表現では、分布意味論に基づいて、語の分
布の情報からベクトルを作成し、単語ベクトルとして
語の意味を表現する [22][7]。単語ベクトル間の距離な
どを用いて、語の意味の類義性などが判断できること
から、語の分散表現は質問応答システムや情報抽出な
どの様々なタスクに貢献している。また、語の分散表
現はコーパスから自動的に獲得できるため、人手で作
成したリソースに存在しない語に対応できることも大
きな利点となっている。近年では、語の類義関係に留
まらず、アナロジーなど、単語間の様々な意味関係を分
散表現を用いて推測するという意味タスクの研究がな
されている。そのような研究の一つとして、分散表現
を用いた二語の上位下位関係の推測・学習が注目されて
いる。これは、「動物」が「犬」の上位語であり、「犬」
が「動物」の下位語であるというような意味関係を、そ
れぞれの語の分散表現から推定するタスクである。
本稿では、分散表現からある二語の上位下位関係を
推測する研究と問題点について概観し、今後の研究の
方向性を提案するとともに、その提案の妥当性を裏付
ける簡単な実験の報告を行う。

2 分散表現

分布意味論においては、語の出現文脈によって、単
語の意味を捉えるため、分散表現を獲得する際は、ま
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ず単語の分布を見る際の文脈を規定する。文脈に何を
用いるかは様々だが、代表的なものとしては、近傍共
起や依存構造に基づく関係を利用するものが挙げられ
る。近傍共起では、対象の語の前後数語を文脈窓とし
て共起を測る。一方、依存構造においては、主語と動詞
の関係など、文中において対象の単語が他の語とどの
ように関わっているかを文脈として用いる。分散表現
の性質はこのような文脈の選択により決定される。た
とえば、文脈窓を採用した場合は話題的・領域的な類
似性がベクトル空間上で表現され、依存構造などの統
語的な文脈を用いた場合は、語の品詞などを考慮した
機能的な類似性が捉えられるという報告がある [9]。し
かし、様々な意味タスクにおける性能の良さや、コー
パスを処理するコストの低さから、自然言語処理にお
ける分布意味論の分野では文脈窓が用いられることが
多い。
以上から、本稿では文脈窓の利用を前提としつつ、本
節においては二つの分散表現の獲得法について説明す
る。一つは共起頻度に基づく古典的な共起頻度ベクト
ル（カウントベースの分散表現）であり、もう一つは
近年台頭してきたニューラルネットワークによる学習
から獲得する単語埋め込みベクトル（ニューラルベー
スの分散表現）である。
なお、本稿では以下の記法を用いる。単語 wの集合
を VW、単語の文脈（文脈窓中に出現する語）cの集合
を VC とし、w の単語ベクトルを w⃗、文脈 cの単語ベ
クトルを c⃗とする。また、コーパスで観察された wと
cの共起 (w, c)の集合をDとし、コーパスで観察され
た要素の頻度を返す関数を f とする。
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2.1 カウントベースの分散表現

カウントベースの分散表現獲得では、文脈に基づい
て共起頻度を集計し、|VW | × |VC |の共起頻度行列M

を作成する。単語wに該当する行を行列M から切り出
すことで、単語ベクトル w⃗が得られる。カウントベー
スの分散表現は、高次元でスパースな表現であり、M

のほとんどの要素は 0である。また、後に述べるニュー
ラルベースの分散表現と異なり、カウントベースの分
散表現においては w⃗の各次元が単語wと文脈 cの結び
つきの強さを表しており、各次元の持つ意味が明確で
あることが特徴である。
行列M の要素として、生の共起頻度をそのまま用い

た場合、wや cの頻度のばらつきが単語ベクトルに悪
影響を及ぼす可能性がある。このような問題を回避す
るために、共起頻度行列M の各要素を以下で定義され
るPMI(pointwise mutual information, 相互情報量)に
変換することがよく行われる。

PMI(w, c) = log2
P (w, c)

P (w)P (c)

= log2
f(w, c)|D|
f(w)f(c)

PMIはwと cが共起する確率からそれぞれの出現確率
を差し引いており、正確に二語の結びつきの強さを測
ることができる。しかし、wと cの共起が観察されな
かった場合、PMI(w, c) = −∞になるため、実際は以
下の PPMI(positive pointwise mutual information, 正
の相互情報量)が用いられることが多い。

PPMI(w, c) =

{
0 (PMI(w, c) ≤ 0)

PMI(w, c) (PMI(w, c) > 0)

PPMIは生の共起頻度を用いるより、様々な意味タ
スクにおいて良い成績を残す一方で、低頻度な wや c

を含むペアに高い値を返してしまうバイアスがあるこ
とが知られている [12]。
また、行列M のスパースネスを解消するために、特

異値分解によって |VW | × |VC |の行列M を |VW | × d

（dは数百次元）に圧縮して用いることもある。この場
合、文脈 cを表していた単語ベクトルの各次元の意味
は失われる。

2.2 ニューラルベースの分散表現

ニューラルベースの分散表現獲得では基本的に、ニ
ューラルネットワークの入力層と出力層に単語や文脈
を配置して学習を行い、d次元の隠れ層を低次元で密な
単語の表現として取り出す。カウントベースの分散表
現とは対照的に、各次元の意味は不明瞭であり、直観

を働かせることはできない。本稿では、文献 [14]と文
献 [15]で提案された、ネガティブサンプリングを用い
た SkipGramモデル（SGNS）を説明する。SGNSは
意味タスクにおいて汎用的に用いられている分散表現
獲得法である。
SGNSは、コーパスで観察された共起 (w, c)に対し、

d個のユニットからなる隠れ層を持つニューラルネット
ワークの入力層に、w に該当する次元のみ 1（他の次
元は 0)の |VW |次元 one-hotベクトルを配置し、出力
層には cに該当する部分のみ 1の |VC |次元 one-hotベ
クトルを配置して学習を行う。その結果において、入
力層側にある |VW | × dのパラメータ行列の w に該当
する行を単語ベクトル w⃗、出力層側にある d× |VC |の
パラメータ行列の cに該当する列を文脈ベクトル c⃗と
みなす1。
以下では SGNSの目的関数について説明する。いま、

(w, c)がDに含まれる確率を、

P (D = 1|w, c) = 1

1 + exp(−w⃗ · c⃗)

のようにモデル化すると、目的関数は、

arg max
w⃗,⃗c

∏
(w,c)∈D

P (D = 1|w, c)

= arg max
w⃗,⃗c

∑
(w,c)∈D

log
1

1 + exp(−w⃗ · c⃗)

となる。このままだと、すべての (w, c)に対し P (D =

1|w, c) = 1になってしまうパラメータが存在するため、
各 (w, c)に対し、Dに存在しないk個のペア（(w, c1), ...,

(w, ck)）を負例として考慮して学習する。cj は P (c)の
3/4乗に従ってサンプリングを行う。負例の集合をD′

とすると、ネガティブサンプリングを用いた場合の目
的関数は、

arg max
w⃗,⃗c

∏
(w,c)∈D

P (D = 1|w, c)
∏

(w,c)∈D′

P (D = 0|w, c)

= arg max
w⃗,⃗c

∑
(w,c)∈D

log
1

1 + exp(−w⃗ · c⃗)
·

k∑
(w,c)∼P (c)

3
4 ∈D′

log
1

1 + exp(w⃗ · c⃗)

となる。この目的関数を確率的勾配降下法などを用い
て最適化すると、d次元の単語埋め込みベクトルが得
られることになる。
ニューラルベースで獲得した低次元で密な分散表現
はカウントベースの分散表現と同様に、様々な意味タ
スクに用いることができる。

1wの one-hotベクトルに入力層側のパラメータ行列をかけると、
d 次元の単語埋め込みベクトル w⃗ が得られる。
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2.3 カウントベース vs. ニューラルベース

文献 [2]では、様々な類義語の認識やアナロジーの計
算などの様々な意味タスクにおいて、カウントベース
の分散表現とニューラルベースの分散表現を用いた際
の性能が比較されており、基本的にはニューラルベー
スの分散表現の性能が良いと報告されている。
一方で、ニューラルベースの分散表現獲得法がカウ
ントベースの獲得法よりアルゴリズムとして優れてい
るという主張に疑問を投げかける、Levyらによる一連
の報告がある [11][10][13]。
たとえば、文献 [11]では、SGNSなどのword2vec系

の分散表現獲得法は、カウントベースの PMI 行列を
行列分解していることと等価であると述べられている。
この報告によると、SGNSの目的関数を展開し、w⃗ · c⃗
で微分することで、

w⃗ · c⃗ = log

(
f(w, c) · |D|
f(w) · f(c)

)
− log k

= PMI(w, c)− log k

が得られる。このとき、SGNSにおける入力層側のパ
ラメータ行列をW、出力層側のパラメータ行列をCと
すると、

Wi · Cj = PMI(wi, cj)− log k

となる。この式の右辺はカウントベースの共起頻度行
列M の各要素を PMI行列に変換し、各要素からネガ
ティブサンプリングに用いた負例ペアの数の対数をとっ
た値を差し引いた行列である。結局、SGNSで行われ
ている最適化は、単語ベクトルと文脈ベクトルの内積
が PMI行列の各要素から log kを引いた値になるよう
に学習しているということになる。以上のことから、
SGNSは特異値分解とは異なるが、同じ行列分解の一
種とみなすことができる2。
また、ニューラルベースの分散表現が注目された理
由のひとつに、アナロジーの計算ができることが挙げ
られる。アナロジーの計算とは、たとえば、「女性」の
ベクトルから「男性」のベクトルを引き「王様」のベ
クトルを足すと、「女王」のベクトルに非常に近いベク
トルになるというものであり、ニューラルベースの分
散表現は意味関係を簡単な足し引きで表現できると言
われていた [14][15][16]。しかし、アナロジーを計算す
るための式を改良することで、ニューラルベースの分
散表現とカウントベースの分散表現の両表現でアナロ
ジータスクの性能が向上し、またそれぞれの表現を用
いた際の性能が拮抗するという報告がある [10]。この

2word2vec系でも CBoWモデルや、別のニューラルネットワー
クモデルでは事情が異なる。一方、同じくニューラルベースの分散
表現獲得法である GloVe は、行列分解とみなせるとの報告がある
[20]。

ことから、アナロジーの計算に必要な情報は、ニュー
ラルベースの分散表現のベクトル空間のみにおいて捉
えられているわけではなく、カウントベースの分散表
現獲得法でも捉えられていることがわかる。
さらに、文献 [13]では、SGNSなどのニューラルベー
スの分散表現獲得法に実装されているネガティブサン
プリングやサブサンプリング（高頻度語の文脈からの
確率的な排除）などを、分散表現獲得の際のハイパー
パラメータとみなし、同等の処理ををカウントベース
の分散表現獲得法にも適用することで、様々な意味タ
スクにおける両分散表現の性能が拮抗するという実験
結果が報告されている。この結果を踏まえて Levyら
は、ニューラルベースの分散表現の優位性は、アルゴ
リズムそのものが優れているのではなく、獲得手法に
デフォルトで設定されているハイパーパラメータが性
能の向上に寄与した結果であり、カウントベースの分
散表現獲得法とニューラルベースの分散表現獲得法に
本質的な差はないと結論づけている。一方で Levyら
は、SGNSは分散表現の獲得が早く、かつ、非常にロ
バストな表現であり、意味タスクにおいて際立った性
能を出すことは少ないが、性能が急激に落ちることも
なく、実験を行う際のベースラインとして優れている
と報告している。
以上の一連の報告から、カウントベースの分散表現
とニューラルベースの分散表現のどちらが優れている
かは一概に論じることが難しく、意味タスクごとに最
適な分散表現とハイパーパラメータを探索することが
重要であることがわかる。

3 上位下位関係の学習

上位下位関係を分散表現から学習する場合、類義関
係などの対称的な意味関係と異なり、二つの分散表現
に対して非対称な指標や関数を求める必要がある。本
節では、2節の手法を用いて獲得した分散表現を用い
て語の上位下位関係を学習するための二つのアプロー
チ（教師なし学習と教師あり学習）と、文献 [12]で報
告された教師あり学習の問題点について概観する。

3.1 教師なし学習

分散表現を用いた上位下位関係推測研究の初期にお
いては、二語の分布の包含性を測る指標が研究されて
いた。これらの一連の研究は、内省的な分析に基づい
た指標の提案を行うものであり、訓練データを利用し
た機械学習によらないという意味で、上位下位関係の
教師なし学習と呼ばれている。このアプローチにおい
ては、基本的に以下の二つの分布意味論的直観が前提
とされている。
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• 分布一般性 (Distributional generality)[22]

• 分布包含仮説 (Distributional inclusion

hypotheses)[5]

分布一般性とは、意味の広い語はコーパス上に広く分
布するという直観である。たとえば、「動物」という単
語は「犬」という単語に比べて、「犬」とは共起しにく
そうな「泳ぐ」や「飛ぶ」といった単語とも共起する
はずである。この直観をもとに、広く分布する語はよ
り上位語らしく、分布が狭い語はより下位語らしいと
判断することができる。一方、分布包含仮説とは、あ
る二語が上位下位関係にあるならば、下位語の出現文
脈がある程度上位語の出現文脈に含まれているという
直観である。たとえば、「犬」は「走る」や「吠える」
などと共起するはずだが、「動物」も同様の文脈に出現
するはずである。ここから、分布の包含関係を見るこ
とで、上位下位関係を判断できると期待できる。この
二つの前提のもとで、二語の分散表現の各次元の値を
見比べることで、上位下位関係性を判断するための指
標が提案されてきた。なお、教師なし学習においては
各次元の意味が明確である必要があるため、基本的に
分散表現はカウントベースのものを用いる。以下では、
代表的な指標を紹介する。なお、以降では w1と w2の
二語を扱うとする。w⃗i = (wi1, ..., win)であり、関数 F

をベクトルの 0ではない素性の集合を返す関数とする。
分布意味論的観点から提案された最初の指標は、Weeds

という指標である [22]。

WeedsP (w1, w2) =

∑
i∈F (w1)∩F (w2)

w1i∑
i∈F (w1)

w1i

WeedsR(w1, w2) =

∑
i∈F (w1)∩F (w2)

w2i∑
i∈F (w2)

w2i

これは、情報検索などの評価指標として用いられる pre-

cisionと recallを二語の関係性を捉える際に適用し、分
布の包含性を捉えようとしたものである。いまw1が下
位語、w2が上位語であるとすると、下位語の分布は上
位語の分布にある程度包含されるため、WeedsP の値
は 1に近づき、WeedsRの値は 0と 1の間に収まると
いう指標である。判別においては、WeedsP のみ、あ
るいはWeedsP −WeedsRを用いて、閾値を設定して
上位下位関係の有無を判断する。
Weedsから派生した指標として、Clarke[3]と invCL[8]

という指標がある。

ClarkeP (w1, w2) =

∑
i∈F (w1)∩F (w2)

min(w1i, w2i)∑
i∈F (w1)

w1i

ClarkeR(w1, w2) =

∑
i∈F (w1)∩F (w2)

min(w1i, w2i)∑
i∈F (w2)

w2i

invCL(w1, w2)

=
√

ClarkeP (w1, w2)(1− ClarkeR(w1, w2))

ClarkeはWeedsに近い指標であり、ClarkeP のみ、
あるいは ClarkeP − WeedsRを用いて、閾値を設定
する。invCLはWeedsやClarkeと異なり、下位語が
上位語にどれだけ包含されているかのみならず、下位
語の出現文脈の以外の上位語の分布の広さを考慮した
指標になっている。invCLも閾値を設定して、二語の
上位下位関係の有無を判断させる。
また、invCLのような指標の派生として、以下の様
な指標も考えることができる [21]。

simdiff(w1, w2) =

∑
i∈F (w1)∪F (w2)

min(w1i, w2i)∑
i∈F (w1)∪F (w2)

max(w1i, w2i)

·
∑

i∈F (w2)−F (w1)
w2i −

∑
i∈F (w1)−F (w2)

w1i∑
i∈F (w1)∪F (w2)

max(w1i, w2i)

これは Jaccard尺度（第 1項）と分布が重なっていな
い部分の文脈の広さの差（第 2項）の積である。つま
り、二語がどれくらい似ているかと上位語と下位語に
どれくらい分布の広さに差があるかを考慮している。
また、ここでは深く触れないが、w1と w2の分布の

包含を測る際、AP(Average Precision)を応用すること
で、w1が w2とより結びつきが強い文脈語と共起する
場合により重みを割り振った、balAPincという指標も
ある [7]。
教師なし学習の性能を測るために、Erkが行った実
験 [4]を参考にして、以下の実験を行った。対象の語を
動詞にしぼり、BNC(British National Corpus)コーパ
ス前半の 5000万語から、動詞の主語と目的語を依存構
造文脈として集計し、PPMI行列を作成した。データ
セットしては、WordNet3.0から同義語集合を一つしか
持たない単義の動詞と、その直接の上位語のペアを正
例とし、負例は下位語と上位語の正例以外の組み合わ
せにより作成した。条件ごとに、負例から正例と同じ
数のペアをランダムにサンプリングし、それぞれの指
標を用いて最適な閾値を設定した場合の正解率は以下
のようになった。なお、Weedsと Clarkeに関しては
precisionから recallを引いたものをを指標として用い
ている。

表 1: 教師なし学習の性能
全負例 負例 1 負例 2 負例 3

Weeds 0.74 0.59 0.83 0.72

Clarke 0.74 0.61 0.83 0.72

invCL 0.71 0.64 0.83 0.65

simdiff 0.74 0.64 0.83 0.72

全負例はすべての負例ペア、負例 1はちぐはぐな上
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位下位関係のペア、負例 2は下位語同士のペア、負例 3

は上位語同士のペアからそれぞれサンプリングした場
合の正解率である。ちぐはぐな上位下位関係のペアと
は、下位語の集合と上位語の集合から、それぞれ一語
ずつ抜き出し、正例にないペアを作ることによって作
り出した負例である。用いるデータセットにもよるが、
頻度の少ない下位語同士のペアを負例と判断するよう
な簡単な場合（負例 2）を除くと、分布の包含関係に基
づく指標は、だいたい 6割から 7割 5分くらいの正解
率であることがわかる。
また、分布包含仮説に依拠せず、文脈語の分布に着目
した指標として、文献 [19]で提案された SLQSという
指標がある。この指標は、上位語はより広い意味を持
つ文脈語と共起し、下位語は狭い意味を持つ文脈と共
起するという直観に基づいている。たとえば、「動物」
という語は「走る」や「飛ぶ」といった一般的な語と
共起するが、「犬」は「吠える」などの具体的な語と共
起しやすい。このような直観に基づけば、二語がよく
共起する文脈語のベクトルを見て、それらのエントロ
ピーを比べることで上位下位関係性が特定できるはず
である。SLQS では、対象の語と結びつきが強い上位
N個の文脈語のエントロピーを計算し、その中央値を
とって比較する。いま、文脈語ベクトル c⃗ = (c1, ..., cn)

のエントロピーを以下のように定義する。

H(c) = −
n∑

i=1

p(ci|c) · log2(p(ci|c))

p(ci|c)は文脈語 cの頻度と各共起頻度の割合である。
これをMinMaxスケーリングにより 0から 1の値を取
るようにスケーリングし、その値をHn(c)と定義する
と、単語 wi の文脈語のエントロピーの中央値は、

Ewi = MeNj=1(Hn(cj))

と定義される。ただし、Meは中央値を返す関数であ
る。このとき SLQS は、

SLQS(w1, w2) = 1− Ew1

Ew2

となる。SLQS(w1, w2) > 0のとき、w1 は w2 の下位
語と判断される。

3.2 教師あり学習

分散表現を用いた上位下位関係の教師あり学習では、
二つの単語ベクトルに何らかの演算を施して特徴ベク
トルとして扱い、二語が上位下位関係を持つか否かの
二値分類を学習する。学習アルゴリズムには、SVMを
用いるもの [18][23]、ロジスティック回帰を用いるもの
[18]などがある。二つのベクトルに施す演算としては、

差をとったり、二つのベクトルを結合して特徴量とす
る方法の性能がいいことが知られている。
教師あり学習の性能を確認するために、以下の上位
下位関係性の二値分類実験を行った。
分散表現には、BNC約 1億語から、前後二語の文脈
窓を採用した SGNSを用いて獲得したものを用いた3。
データセットにはBLESS[1]を用いた。このデータセッ
トは曖昧性のない 200語の名詞について、上位下位関
係や類義関係、部分全体関係、ランダムな関係にある
語などを収集して作成されたものである。
BLESSにおいて、上位下位関係にある 1337ペアか
ら、分散表現が獲得できた 1155ペアを正例として扱い、
同じく分散表現が獲得できた上位下位関係以外の名詞
ペアを負例とした。正例ペアと同じ数だけ負例ペアを
サンプリングし、SGNSによって獲得した 500次元の
単語ベクトルの差を特徴量として、10分割交差検定の
ロジスティック回帰を行う。これを 50回繰り返したと
き、平均スコアとして 0.93の分類正解率、0.93のF値、
また、ペアに割り当てた確率をもとにデータを並べ替
え AP(Average Precision)を計算したところ、0.97を
マークした。文脈や分散表現の性質、用いているデー
タセットが異なるものの、教師あり学習は 3.1節で紹介
した教師なし学習の手法よりも良い成績を残している。

3.3 教師あり学習の問題点

教師あり学習は高い分類精度を誇る一方で、上位語
に位置しやすい単語を覚えているだけであるという問
題点が指摘されている。文献 [12]では、このような教
師あり学習の振る舞いを調べるために、様々なデータ
セットを用いて二つの実験が行われている。
ひとつは、訓練データとテストデータの単語ペアの
語彙の重なりをなくして分類を行う実験である。これ
によって、教師あり学習の分類性能が大きくに下がり、
データセットによっては教師なし学習を下回るの性能
になってしまうことが観測されている。また、二つの
ベクトルの差や結合を用いた場合と、上位語のみを用
いて学習した場合の性能の比較を行うと、性能差がご
く小さいことがわかった。この実験によって、教師あ
り学習は下位語の情報をほぼ無視していることが明ら
かになった。
もうひとつの実験は、様々な条件で学習を行った分
類器に、ちぐはぐな上位下位関係のペアを判断させる
実験である。ちぐはぐな上位下位関係を誤って正例と
して分類してしまう割合をmatch errorとして算出し、
様々なモデルで recallとの相関を調べたところ非常に
強い相関があり、matcherror = 0.935 · recall と線形
回帰できてしまうことが明らかになった。つまり、正

3分散表現の獲得には、Omer Levyが公開している hyperwords
を用いた。https://bitbucket.org/omerlevy/hyperwords

人工知能学会 インタラクティブ 
情報アクセスと可視化マイニング研究会(第13回) 
SIG-AM-13-03

18-　　　-



しく上位下位関係を持つペアを正例として多く分類で
きる分類器は、その分、ちぐはぐな上位下位関係を持
つペアも誤って正例として分類してしまうことになる。
これらの実験から文献 [12]は、教師あり学習では典
型的な上位語を覚えているだけであり、二語の関係性
は学習できていないと結論づけている。
この結論を追証するために、3.2節で行った実験と、

コーパスや分散表現は同じ条件で、訓練データとテス
トデータの語彙の重なりをなくした場合の結果を以下
に示す。

表 2: 教師あり学習における語彙の重なりの影響
重なりあり 重なりなし ∆　

分類正解率 0.93 0.68 0.25

F 値 0.93 0.61 0.32

AP 0.97 0.77 0.20

　

（∆は「重なりあり」と「重なりなし」の差を表す）

表 5を見ると重なりがある場合と重なりがない場合
に性能差があることがわかる。教師あり学習が二語の
関係性を学習できていないとすると、そのようなモデ
ルは訓練データにない語彙に対応できない。これは、
コーパスからの自動的学習のそもそものメリットであ
る、「人手によるリソースに存在しない語彙に対応でき
る」という点においては致命的である。

4 考察と今後の方向性

　 3.3節で述べたような教師あり学習の典型的な上
位語の記憶という問題への対処としては、二つの方向
性が考えられる。ひとつは分散表現獲得法の最適化で
あり、もうひとつは学習法の見直しである。

4.1 分散表現の最適化

分散表現は、語の文脈によって語の意味を表現する
という分布意味論に基づいて獲得されるが、そのモデ
ル自体が特定の意味タスクを志向しているわけではな
い。よって、ある意味タスクの性能の向上のためには、
それぞれの意味タスクが着目している語の意味の側面
を正しく反映するようなハイパーパラメータの調整や、
モデルそのものの変更が必要になる。たとえば、上位
下位関係の認識においては話題的・領域的な類似性だ
けでなく、語の機能的な類似性も見る必要があるはず
である。現在は他の様々な意味タスクでの性能の良さ
や処理コストの低さから文脈窓を用いられることが多
いが、上位下位関係認識においては、文脈に依存構造
を採用することによって、ちぐはぐな上位下位関係を

正例と判断してしまう割合が減少することが考えられ
る4

4.2 学習法の見直し

上位下位関係認識の教師あり学習においては、特徴
量として二つのベクトルの差や結合を用いるだけでは、
二語の関係性を学習できていないことがわかっている
[12]。これに対しては、上位下位関係に関して分布的な
意味付けがより明確な特徴を用いることによって、二
語の関係性の学習を促進できる可能性がある。そのよ
うな特徴として、今まで研究されてきた教師なし学習
の指標を挙げることができる。これらの指標を特徴と
して採用することで、二語の分布の包含関係や形状の
違いなどの関係性が学習されるはずである。

4.3 実験

これらのアプローチの妥当性を検討するために、3.1

節で述べたような、教師なし学習として提案された指
標群を、教師あり学習における特徴量として採用した
場合の性能評価を行った。
分散表現として BNC約 1億語から前後二語の文脈
窓を共起として獲得した PPMI行列を採用し、データ
セットは 3.2節と同じくBLESSにおける名詞ペアを用
いた。
特徴量としては以下のものを採用した。

• 二語の類似度： cos類似度

• 分布の包含関係：WeedsP/R, ClarkeP/R, invCL

• 分布の形状： 二語の分布のエントロピーの差と
比、それぞれのベクトルにおいて値が高い上位 50

次元の値の平均の差

• 文脈の分布: SLQS

まず、二語の類似度を見るために cos類似度を特徴と
して考慮し、分布の包含関係を見るために、WeedsP/R、
ClarkeP/R、invCLを採用した。また、分布の形状の
違いを見るために二語の分布のエントロピーの差と比、
それぞれの単語ベクトルにおいて値が高い上位 50次元
の値の平均の差を採用した。これは上位語は分布がな
だらかで広く、下位語は狭い文脈にしか出現しないと
いう直観に基づく。さらに結びつきが強い文脈語の分
布を見るために SLQSを特徴として考慮する。これに
よって、二語の分散表現から 10次元の特徴ベクトルを
算出することができる。

4ただし、大規模コーパスに対し依存構造解析を行うコストや、精
度の良いパーサーが存在する言語の少なさを考えると、文脈窓の採
用には妥当性がある。
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表 3: 提案手法における語彙の重なりの影響
重なりあり 重なりなし ∆　

分類正解率 0.61 0.55 0.06

F 値 0.59 0.50 0.09

AP 0.64 0.59 0.05

表 4: cos類似度のみ (baseline)

重なりあり 重なりなし ∆　
分類正解率 0.54 0.49 0.05

F 値 0.51 0.41 0.10

AP 0.56 0.56 0.0

この特徴ベクトルをもとに、上位下位関係のペアを
正例として、正例と負例の数を揃えてロジスティック
回帰を行い、10分割交差検定を行った場合の性能と、
3.3節で行った実験と同様に、訓練データとテストデー
タの語彙の重なりをなくした場合の性能を比較すると、
表 3,表 4のようになった。
なお、baselineは cos類似度のみを用いた場合とし

た。提案手法はいずれの場合でもベースラインを上回
りつつ、SGNSよりも語彙の重なりの影響が少ないこ
とがわかる。この結果から、二語の関係性としての意
味付けが明確なものを特徴量に用いると、性能は低い
ものの、語彙の重なりの影響が少ないことがわかる。
さらに、SGNSで獲得した二語の単語ベクトルの差

に、今回算出した特徴ベクトルを結合して学習した場
合の性能（SGNS+提案手法）と、単語ベクトルの差の
みを特徴ベクトルとして学習した場合の性能（SGNS

のみ）を比較した。訓練データとテストデータの語彙
の重なりをなくした際の結果は以下のようになった。

表 5: 提案手法を付加した場合の性能
SGNSのみ SGNS+提案手法

分類正解率 0.68 0.73

F 値 0.61 0.68

AP 0.77 0.83

提案手法の特徴ベクトルを従来の教師あり学習の特
徴ベクトルに結合した場合、正解率、F値、APにおい
て性能が向上している。この結果から、従来の特徴ベ
クトルに教師なし学習の指標を付加することで、二語
の関係性の学習が促進されていることがわかる。これ
によって、教師あり学習の際に、上位下位関係に関し
て意味付けが明確な分布的特徴を用いることで、二語
の関係性の学習が可能であることが示された。

5 おわりに

本稿では、分散表現を用いてある語のペアが上位下
位関係を持つか否かを判別する研究とその問題点を概
観した。今後の研究の方針として、二語の分散表現の
差をや結合を用いて教師あり学習を行った場合、二語
の関係性を学習できないが、分散表現から分布的特徴
を適切に抽出すれば、二語の関係性の学習を促進でき
ることを示した。これからは、上位下位関係の認識に
最適な分散表現の獲得法と、影響力のある分布的特徴
を模索していきたい。
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