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Abstract: 議論における主張間の関係を表す議論フレームワーク (AF) において, 受け入れる主張
を決定する方法として, Dungの意味論に基づく方法, 主張ごとに定めたコストに基づく方法, 主張間
ごとに定めた優先度に基づく方法などが提案されている. 本研究では, それらの方法の間の関係を検
討し, お互いに矛盾するものだけでなく, 両立するものがあることを示す.

1 序論

議論フレームワークは, 議論を表現するためのフレー
ムワークであり, とくに主張の説得力を評価する目的で
用いられている. このために用いられる semantics (意
味論)として, “説得力のある主張の集合”を定義するも
のである Dungの semanticsがあるが, この semantics

では主張の受け入れやすさを評価する基準が「受け入
れられる」「受け入れられない」の二値しかないため,

巨大な議論を扱う場合などには実用的でないとされて
いる. この問題を解決するために, 多数のレベルの受
け入れやすさを考えることができる semanticsとして,

ranking semanticsと呼ばれるものがいくつか提案され
ている. しかしながら, Dungの semanticsと ranking

semantics との関係についてはこれまで十分に研究さ
れていなかった. 本論文では, Dung の semantics と
ranking semanticsとの関係について調べ, それらが矛
盾する場合だけではなく, 両立する場合もあることを
示す.

2 Dungの semantics

本節では Dungの semanticsを説明する.

定義 2.1 (議論フレームワーク [2]). 有限集合Aおよび
A上の二項関係→ ⊆ A × Aの組 F = ⟨A,→⟩を議論
フレームワーク (Argumentation Framework, AF) と
いう. S, T ⊆ Aに対して, ある s ∈ S, t ∈ T があって
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s → tであることを S → T で表す. S = {s}のときは
s → T , T = {t}のときは S → tのようにも書く.

定義 2.2. F = ⟨A,→⟩ を AF, S ⊆ A とする.

a → b なる a, b ∈ S が存在しないとき S は conflict-

free であるという. Def(S) = {a ∈ A | (∀b →
a,∃c ∈ S, c → b)} と定める. S が conflict-free か
つ S ⊆ Def(S) のとき S は admissible extension で
あるという. S が admissible extension かつ S =

Def(S) であるとき S は complete extension であると
いう. F の admissible extension 全体, complete ex-

tension全体をそれぞれ adm(F ), comp(F )で表す. 列
∅,Def(∅),Def2(∅), . . . ,Defn(∅), . . . は増大列であって,

十分大きなN に対しDefN (∅) = DefN+1(∅)を満たす.

このDefN (∅)を grounded extensionという. Atk(S) =

{b | S → b}と定める.

3 ranking semanticsの定義

本節では ranking semanticsを説明する.

定義 3.1. 反射的・推移的二項関係を preorderという.

≿を A上の preorderとし, 次のように定める:

• a ≃ b ⇔ a ≿ bかつ b ≿ a

• a ≻ b ⇔ a ≿ bだが b ≿ aではない

定義 3.2 (ranking semantics[3]). AF F が与えられた
ときA(F )上の preorder (反射的・推移的二項関係，擬
順序) a ≿F bを返すものを ranking semanticsという.
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4 ranking semanticsの公理

ranking semanticsの性質をみるために公理1がいく
つか提案されている. ここではそれらの公理を紹介す
るために, まずいくつか定義を導入する. 実例は後半で
示す.

定義 4.1. F,G: AF に対し F ∪ G := ⟨A(F ) ∪
A(G),→F ∪ →G⟩ と定める. a, b ∈ A(F ) に対し,

Pab = {b = a0 → a1 → · · · → an = a | ai ∈ A}
と定める. l = a0 → · · · → an に対し |l| = nと定め
る. Rn(a) = {b | ∃l ∈ Pab, |l| = n} (多重集合) と定
め, R+(a) = ∪n∈Z+R2n(a), R

−(a) = ∪n∈Z+R2n−1(a)

と定め, 前者の元を aの defender, 後者の元を aの at-

tackerとよぶ. R1(a)の元を aの direct attackerとよ
び, R2(a) ̸= ∅のときaは defendされているという.

定義 4.2. defense root (resp. attack root) とは non-

attacked defender (resp. attacker) のことをいう.

BRn(a) = {b ∈ Rn(a) | R1(b) = ∅} と定めたと
き BR+(a) = ∪n∈Z+BR2n(a)の元を defense branch,

BR−(a) = ∪n∈Z+BR2n−1(a)の元を attack branchと
いう.

定義 4.3. F = ⟨A,→⟩に対し次のようなAFを考える:

Pn(a) = ⟨{x0 = a, x1, . . . , xn}, {xn → xn−1, xn−1 →
xn−2, . . . , x1, x1 → x0}⟩. ここで i ̸= 0に対し xi /∈ A.

定義 4.4. a ∈ A(F )の defenseが simpleであるとは,

任意の aの defenderは, aの 1つの attackerを攻撃し
ていることをいう. また, aの defenseが distributedで
あるとは, 任意の aの direct attacker bに対し, bを攻
撃しているような元は高々1つであることをいう.

定義 4.5. F = ⟨A,→⟩に対し F と同型な F のコピー
F ′ = ⟨A′, F ′⟩と同型対応を与える写像 γ : A → A′ を
考える (A ∩A′ = ∅). このとき F ′ = F γ と書く.

ranking semanticsの妥当性について判断するための
公理がいくつかある. 本節ではそのような公理のうち,

それ自体もまた ranking semanticsと見なせる (具体的
な方法は定義 5.1の次の説明を参照されたい)ようなも
のについて見ていく.

VP R1(a) = ∅, R1(b) ̸= ∅ならば a ≻ b

SC a ̸→ a, b → bならば a ≻ b

CP |R1(a)| < |R1(b)|ならば a ≻ b

1与えられた ranking semanticsがどの公理を満たすか調べるよ
うな使い方をするので，公理というよりも性質という方が適切であ
るが，先行研究では axiomと呼ばれているので本論文では公理と呼
んでおく．

DP |R1(a)| = |R1(b)|, R2(a) ̸= ∅, R2(b) = ∅ならば
a ≻ b

DDP |R1(a)| = |R1(b)|, |R2(a)| = |R2(b)|, aの de-

fenseは simpleで distributed, bの defenseは simpleだ
が distributedでないならば a ≻ b

⊕DB a ∈ A(F )とする. F ∪ F γ ∪ P2n(γ(a))におい
て γ(a) ≻ a

+DB a ∈ A(F )とする. R1(a) ̸= ∅ならば F ∪ F γ ∪
P2n(γ(a))において γ(a) ≻ a

↑DB a, b ∈ A(F )とする. b ∈ BR+(a), b /∈ BR−(a)

ならば F ∪ F γ ∪ P2n(γ(b))において a ≻ γ(a)

↑AB a, b ∈ A(F )とする. b ∈ BR−(a), b /∈ BR+(a)

ならば F ∪ F γ ∪ P2n(γ(b))において γ(a) ≻ a

+AB a ∈ A(F )とする. F ∪ F γ ∪ P2n−1(γ(a))にお
いて a ≻ γ(a)

AvsFD AFが acyclicで BR−(a) = ∅, |R1(b)| = 1,

R2(b) = ∅ならば a ≻ b

5 Dungのsemanticsから誘導され
る ranking semantics

本節ではDungの semanticsから誘導される ranking

semanticsである Dung rankingを新たに提案する. そ
のためにまず ranking semantics間の関係を定義して
おく.

定義 5.1. 1. ranking semantics

≿が ≿′ より強力であるとは, ≿ ⊇ ≿′ かつ
≻ ⊇ ≻′ であることをいう. ここで, 包含関係は
二項関係を集合としてみたときのものである.

2. 2 つの ranking semantics ≿′, ≿′′ に対し, ≿′ と
≿′ のいずれよりも強力な ranking semantics ≿
があるとき, ≿′ と ≿′′ は両立するという. 同様
に, λ ∈ Λで添字づけられた ranking semantics

の集合 {≿λ}λ∈Λ が与えられたとき, 各 ≿λ いず
れよりも強力な ranking semantics があるなら,

{≿λ}λ∈Λ は両立するという.

一方が他方より強力である場合は, 当然両立するの
で, 2つの ranking semanticsの間の関係は,

1. 一方が他方より強力である
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2. 1ではないが, 両立する

3. 両立しない

の 3つに分類される.

VPなどの公理と他の ranking semanticsは,そのまま
では上記の包含関係や両立の関係を考えることができな
いが, VPなどの公理は「◯◯ならば a ≻ b」という形で
記述されているので, a ≿ b ⇔◯◯または a = bと定義
することで, 公理を満たす最も弱い ranking semantics

そのものと見ることもできる. 以下では, 公理をそのよ
うな ranking semanticsと同一視し,公理と他の ranking

semanticsの比較を行っていく.

各≿λを含むような最小の preorderは ∪λ∈Λ{≿λ}の
推移閉包である. ここで, ≿ ⊇ ≿′に対し, ≿が≿′より
強力であることは, 各 a ≻′ bに対し b ≿ aでないこと
を意味することに注意すれば, 次の命題がいえる.

命題 5.2. {≿λ}λ∈Λ が両立するならば, ∪λ∈Λ{≿λ}の
推移閉包は各 ≿λ より強力である.

2つの ranking semanticsの両立について考えるとき
には, 特に次が成り立つ.

命題 5.3. ≿′と≿′′が両立する⇔ 任意の n ≥ 0と, 主
張の列 a0 ≿′ b0 ≿′′ a1 ≿′ b1 ≿′′ a2 ≿′ b2 ≿′′ · · · ≿′
bn−1 ≿′′ an ≿′ bn ≿′′ a0 に対し, bn ≃′′ a0 ≃′ b0 で
ある.

証明. ⇒ ≿′ と ≿′′ よりも強力な preorder ≿ をとる.

a0 ≿ b0 ≿ a1 ≿ b1 ≿ · · · ≿ an ≿ bn ≿ a0 より,

a0 ≃ b0 であるから, 両立の定義から a0 ≻′ b0 は
成立しない. したがって a0 ≿′ b0である. 同様に
b0 ≿′′ a0 も示される.

⇐ 対偶を示す. ≿′と≿′′が両立しなかったとする. こ
のとき, ≿′ と ≿′′ の和集合の推移閉包を ≿とお
くと, ≻′ ̸⊆ ≻または ≻′′ ̸⊆ ≻である. どちらも
同様であるから ≻′ ̸⊆ ≻の場合のみ示そう. この
とき a ≻′ bかつ a ≻ bでないような a, bがとれ
る. a ≻′ bより a ≿ bであるから, a ≃ bである.

このとき, 推移閉包の構成から, 列 a = a0 ≻′ b =
b0 ≿′′ a1 ≿′ b1 ≿′′ · · · ≿′′ an ≿′ bn ≿′′ a0 がとれ
る. □

系 5.4. ≿′ が半順序であるとき, ≿′ と ≿′′ が両立する
⇔ 任意の n ≥ 0に対し, 列 a0 ≻′ b0 ≿′′ a1 ≻′ b1 ≿′′
a2 ≻′ b2 ≿′′ · · · ≻′ bn−1 ≿′′ an ≻′ bn ≿′′ a0 は存在し
ない.

証明. ⇒ 命題 5.3より明らか.

⇐ 命題 5.3において, ≿′ が半順序であれば a ≿′ b ⇔
a ≻′ b or a = bであることと, preorderの推移律
を適用すればよい. □

b

e

d a

c

図 1: AFの例 F1([2]の Figure 1)

以下では, admissible semanticsや complete seman-

ticsから ranking semanticsを定義するが, 特定の se-

manticsでなくても成立することがあるので, これらの
semanticsを総称して semanticsと呼ぶことにする. 形
式的には, σ : AF → 22

U
であって各F = ⟨A,→⟩ ∈ AF

に対し σ(F ) ⊆ 2Aかつ σ(F ) ̸= ∅なるものを semantics

とよぶことになる.

σ を adm や comp などの Dung の semantics とす
る. 既存の σ(F ) を利用した semantics としては, 主
張 a ∈ A(F ) を uni-accepted, exi-accepted, cleanly-

accepted, not-acceptedの 4つに分類するもの [4]があ
るが, 以下では, これの分類よりも細いものを考える.

以下, 本章を通じて σ(F ) ⊆ adm(F )を仮定する. こ
のとき E ∈ σ(F ) に対し {E,Atk(E),Undec(E)} は
A(F )の分割となる.

定義 5.5. E ⊆ A(F )とする. a, b ∈ Eに対し次のよう
な preorderを考える.

1. a ≳E,3
F b iff [a] ≥ [b] ただし [a]は A(F )の分割

{E,Atk(E),Undec(E)}に付随する同値関係によ
る同値類であり, ≥は, E > Undec(E) > Atk(E)

と定めた >に等号を加えたものである.

2. a ≳E,2
F b iff [a] ≥ [b] ただし [a]は A(F )の分割

{E,A(F )−E}に付随する同値関係による同値類
であって E > A(F )− E とする.

v = 2, 3, a, b ∈ A(F ) に対し a ≿σ,v
F b ⇔ ∀E ∈

σ(F ), a ≳E,v
F bと定める. するとこれは preorderにな

る. この preorderを Dung rankingと呼ぶ.

例 5.6. F1([2] の Figure 1, 図 1 参照) を AF の例と
する. F1 では, b が grounded のため, E = {b, e} が
唯一の complete extension となる. この E に対し
て, {E,Atk(E),Undec(E)} は {{b, e}, {a, c, d}, ∅},
{E,E − Atk(E)} は {{b, e}, {a, c, d}} となり,

b, e ≿comp,v
F a, c, dとなる.

次に, ≿σ,v
F とVPなどの公理 (を ranking semantics)

としてみたものの関係を調べる.
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VP σ = adm (admissible) のとき, ⟨{a, b, c, d}, {b →
c → d}⟩なるAFにおいて aと dが比較不能なのでVP

は必ずしもいえない. だが≿adm,v と≿VPは両立する.

証明. 系 5.4 により, a0 ≻VP b0 ≿adm,v a1 ≻VP

b1 ≿adm,v · · · ≻VP bn−1 ≿adm,v an ≻VP bn ≿adm,v a0
として矛盾を導けばよい. このときR1(a1) = ∅である
から E = {a1}は admissibleであり b0 ≿adm,v a1より
b0 ≳E,v a1 であるから b0 ∈ E, すなわち b0 = a1 とな
る. このとき R1(b0) = ∅だがこれは a0 ≻VP b0に反す
る. □

σ = comp などの場合は a → b → cにおいて a ≃ c

となってしまうため両立しない.

SC σ(F ) ⊆ adm(F )なる任意の σ と, v = 2, 3につ
いて両立しない.

証明. c → a, b → bを考えれば adm(F ) = {∅, {c}}で
ある. a ̸→ a, b → b, b ≿σ,v

F aである. □

CP σ(F ) ⊆ adm(F )なる任意の σ と, v = 2, 3につ
いて両立しない.

証明. c1 → d1, c2 → d2, d1 → c2, d2 → c1, c1 → a,

d1 → a, c1 → b, c2 → b, d1 → bとすると adm(F ) =

{∅, {c1, c2}, {d1, d2}}であり |R1(a)| = 2 < |R1(b)| =
3, b ≿σ,v

F aである. □

DP ≿σ,v が v = 2または, v = 3で σ(F ) ⊆ comp(F )

のとき, 両立する. (なぜなら, a ≻DP bであれば, bは
≿σ,v に関する最小元となるため.)

≿adm,3 についても ≿DP と両立する.

証明. 系 5.4により, 列 a0 ≿adm,3 b0 ≻DP a1 ≿adm,3

b1 ≻DP a2 ≿adm,3 b2 ≻DP · · · ≿adm,3 an ≿adm,3

bn ≻DP an+1 = a0 が存在したとして矛盾を導く.

x ∈ R1(ai)とする. R2(ai) = ∅より, E = {x}とおくと
E ∈ adm(F )である. このとき ai ∈ Atk(E)であり, ま
たai ≿adm,3 biよりai ≳E,3 biであるから bi ∈ Atk(E),

すなわち x ∈ R1(bi)となる. ゆえに R1(ai) ⊆ R1(bi)

となる. とくに |R1(ai)| ≤ |R1(bi)| である. これと
|R1(bi)| = |R1(ai+1)| より, |R1(a0)| ≤ |R1(b0)| =

|R1(b1)| ≤ |R1(a2)| = · · · ≤ |R1(bn)| = |R1(a0)|
となり, 結局 |R1(a0)| = |R1(b0)| である. R1(a0) ⊆
R1(b0)より R1(a0) = R1(b0)といえる. しかしこれは
R2(a0) = ∅, R2(b0) ̸= ∅であることに反する. □

DDP ≿σ,v が v = 2 または, v = 3 で σ(F ) ⊆
comp(F )のとき, 両立する. (なぜなら, a ≻DDP bで
あるとする. このとき |R1(a)| = |R1(b)|, |R2(a)| =

|R2(b)|である. aは distributedであるから, |R1(a)| ≥

|R2(a)|であり, したがって |R1(b)| ≥ |R2(b)|である. b

の defenseは simpleかつ distributedでないから, ある
c ∈ R1(b), R1(c) = ∅である. したがって, v = 2また
は, v = 3で σ(F ) ⊆ comp(F )のとき, a ≻DDP bであ
れば, bは ≿σ,v に関する最小元となる.)

≿adm,3 についても ≿DP と両立する.

証明. 系 5.4により, 列 a0 ≿adm,3 b0 ≻DDP a1 ≿adm,3

b1 ≻DDP · · · ≻DDP an ≿adm,3 bn ≻DDP an+1 = a0
が存在したとして矛盾を導けばよい. φ(a) = {b ∈
R1(a) | R1(b) = ∅} とおく. bi ≻DDP ai+1 ならば
|φ(bi)| < |φ(ai+1)|である. そこで ai ≿adm,3 biに対し
|φ(ai)| ≤ |φ(bi)|が示せれば矛盾が導けて証明が終わる.

いま b ∈ φ(ai)に対し, R1(b) = ∅だから E = {b}とお
けば E ∈ adm(F )である. ai ∈ Atk(E), ai ≿adm,3 bi
より bi ∈ Atk(E)である. すなわち b ∈ R1(bi)となる.

したがって φ(ai) ⊆ φ(bi)であるから |φ(ai)| ≤ |φ(bi)|
が成り立つ. □

⊕DB +DBが両立しないためこちらも両立しない.

+DB 任意の ≿σ,v と両立しない. 実際, a → a, c →
b → γ(a) → γ(a)なる AFを考えると, γ(a) ≻+DB a

だが adm(F ) = {∅, {c}}より a ≃σ,v γ(a)である.

↑AB σ(F ) ⊆ comp(F )のとき, v = 2, 3で両立しな
い. 実際, b → a, d → c → γ(b) → γ(a)なる AFにお
いて γ(a) ≻↑AB aだが comp(F ) = {{b, d, γ(b)}}より
a ≃σ,v γ(a)である. また, σ = adm のときも v = 2な
ら同様の AFで b ≃adm,2 γ(b)となるので両立しない.

≿adm,3 で両立する.

証明. +ABと全く同様なので略.

+AB σ(F ) ⊆ comp(F )のとき, v = 2, 3で両立しな
い. 実際, b → a, γ(b) → γ(a), c → γ(a)なる AFにお
いて a ≻+AB γ(a)だが comp(F ) = {{b, γ(b), c}}より
a ≃σ,v γ(a)である. また, σ = adm のときも v = 2な
ら同様の AFで a ≃adm,2 γ(a)となるので両立しない.

≿adm,3 で両立する.

証明. 系 5.4により, 列 a0 ≿adm,3 b0 ≻+AB a1 ≿adm,3

b1 ≻+AB · · · ≻+AB an ≿adm,3 bn ≻+AB an+1 = a0 が
存在したとして矛盾を導けばよい. bi ≻+AB ai+1 によ
り, 各 aiは少なくとも 1つの attack branchをもつ. そ
のようなものを 1つとって x0 → x1 → · · · → x2k → a

とおく. このとき E = {x0, x2, . . . , x2(k−1), x2k} と
すると, E は admissible で a ∈ Atk(E) であるから,

ai ≿adm,3 bi により, bi ∈ Atk(E)である. したがって,

ai と bi は同じ弱連結成分に含まれる. そこで wi を ai
および bi を含むような弱連結成分の元の個数とする.
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このとき, bi ≻+AB ai+1 より, wi < wi+1 であるが, こ
こから w0 < w1 < · · · < wn < wn+1 = w0 となって矛
盾である. □

↑DB 任意の≿σ,v と両立しない. 実際, c → b → a →
a, e → d → γ(c) → γ(b) → γ(a) → γ(a)なる AFを考
えると, a ≻↑DB γ(a)だが a ≃σ,v γ(a)である.

AvsFD σ(F )が grounded extensionを含むなら v =

2, 3で成立.

証明. E ∈ adm(F ) に対し a /∈ Atk(E), b /∈ E が容
易にいえるので a ≳E,v

F bであることはわかる. とくに
ground extensionは aを含み bを含まないので a ≻σ,v

F b

となる. □

以上をまとめると表 1となる.

≿adm,v ≿comp,v

VP × −
SC − −
CP − −
DP × ×
DDP × ×
⊕DB − −
+DB − −
↑DB − −
↑AB ×(v = 3),−(v = 2) −
+AB ×(v = 3),−(v = 2) −
AvsFD ✓ ✓

表 1: ✓は一方が他方より強力, ×は強力ではないが両
立, −は両立しないことを意味している.

表 1がほとんど “−”であることから, 5節のDungの
rankingと 4節の公理とはやはり相性が悪いことがわか
る. 序論でも述べたように, Dungの semanticsでは, 基
準が「受け入れられる」か「受け入れられない」の二値
になっているため, 要素数などの制約とは合わないこと
が多い. 一方で, DPや DDPのように数の制約があっ
ても, 両立するものがあるのも驚きである. また, ↑AB

や+ABのように branchがあるものでも v = 3の場合
は両立する. さらに, AvsFDのように, Dung ranking

より強力なものもある.

6 ranking semanticsの具体例

次に, 具体的な ranking semanticsとして, [2]に紹介
されている ranking semantics Cat, Dbs, Bds, M&T,

SAF (それぞれ ≿Cat などのように表記することにす

る)と 5節で定義した≿σ,v
F の関係を調べる. (これらの

ranking semanticsの具体的な定義についてはM&Tと
SAFのみ具体的に後述する.) 実のところ, ≿σ,v

F (σ =

adm, comp, v = 2, 3)は両立しない. 証明は省略するが,

これらの ranking semanticsでは, 主張 a, b (a ̸= b) に
対し a ≻ bかつ a ≃adm,v bや a ∼comp,v bとなるよう
な例が簡単に作れるためである. そこで代わりに, 次の
ような ranking semantics ⪰σ,v を考える.

定義 6.1. a ⪰σ,v b ⇔ a ≻σ,v bまたは a = b.

この ⪰σ,v は半順序となる. この ⪰σ,v と ranking se-

manticsとの両立について見ていこう.

Cat, Dbs, Bds Cat, Dbs, Bdsと≿adm,vと≿comp,v

とは両立しない.

なぜならば, 図 1 の F1 において, d ⪰δ e (δ =

Cat,Dbs,Bds) が, e ≻σ,v d (σ = adm, comp) だか
らである.

M&T 次にM&Tを説明する.

F = ⟨A,→⟩ に対し, X,Y ⊆ A として, Y←X を
{(x, y) ∈ X×Y, x → y}と定め, また f(n) = n/(n+1)

とし, P,O ⊆ Aに対し ϕ(P,O) = 1/2 · [1+f(|O←P |)−
f(|P←O|)]と定め, さらに

r(P,O) =


0 (P は conflict-freeでない)

1 (P は conflict-freeかつ P←O = ∅)
ϕ(P,O) (otherwise)

とする. ここで, a ∈ Aを 1つ固定し, 次のような 2人
ゼロ和ゲームを考える: 自分 (proponent) と敵 (oppo-

nent) はそれぞれ戦略として (相手の選ぶ戦略を知らず
に) Aの部分集合 P ⊆ A, O ⊆ Aを選ぶ. ただし, P は
a ∈ P となるように選ばれなければならない. ゲーム
の結果, 自分は敵から利得 r(P,O)を得る. ここで, 互
いに最適な混合戦略をとった場合に, 自分が得られる利
得の期待値を v(a)とする. a ≿M&T b ⇔ v(a) ≥ v(b)

と定める.

定理 6.2. M&Tは⪰σ,v (σ ∈ {adm, comp}, v ∈ {2, 3})
と両立しない.

証明. まず, A = {a0, a1, a2, b0, b1, b2, c}, → = {a0 →
a1, a1 → a2, a2 → a0} ∪ {ai → bj | 0 ≤ i, j ≤ 2} ∪
{bj → c | 0 ≤ j ≤ 2}なる AF F = ⟨A,→⟩(図 2)にお
いて, v(c) ≥ 1/2であることを示す.

自分は混合戦略として, 1/3の確率で {c, a0}, {c, a1},
{c, a2}をそれぞれ選ぶとする. このとき,いかなるO ⊆
Aに対しても 1/3 · [

∑
0≤i≤2 r({c, ai}, O)] ≥ 1/2であ

ることを示せばよく, 各 iに対し {c, ai}は conflict-free

であることと, P は conflict-freeかつ P←O = ∅ のと
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図 2: 定理 6.2の反例の AF

きは ϕ(P,O) ≤ r(P,O) = 1であることに注意すれば,

1/3 · [
∑

0≤i≤2 ϕ({c, ai}, O)] ≥ 1/2であることを示せば
よい.

a3 = a0 とおく. 任意の O ⊆ A および 0 ≤ i ≤ 2

に対し |O←{c,ai}| = |{c, ai+1}←O| であることを示
そう. i = 0 の場合で考える. x ∈ A に対し,

x = a0, a2, c のとき |{x}←{c,a0}| = |{c, a1}←{x}| =

0, その他の場合, すなわち x = a1, b0, b1, b2 のとき
|{x}←{c,a0}| = |{c, a1}←{x}| = 1 である. したがっ
て, 任意の x ∈ Aに対し |{x}←{c,a0}| = |{c, a1}←{x}|
であるから, |O←{c,a0}| =

∑
x∈O |{x}←{c,a0}| =∑

x∈O |{c, a1}←{x}| = |{c, a1}←O| である. i =

1, 2 のときも対称性によって同様に |O←{c,ai}| =

|{c, ai+1}←O|が示される. 以上により,∑
0≤i≤2

[f(|O←{c,ai+1}|)− f(|{c, ai}←O|)] = 0

⇔
∑

0≤i≤2

f(|O←{c,ai}|) =
∑

0≤i≤2

f(|{c, ai}←O|)

⇔1

3

 ∑
0≤i≤2

ϕ({c, ai}, O)

 = 1/2

となる. よって v(c) ≥ 1/2である.

次に, F ′ = ⟨A′,→′⟩を A′ = {d, e, f}, →′ = {d →
e, e → d, e → e, e → f}と定める. このとき, f を含む
ような P のうち conflict-freeなものは {f}, {d, f}の 2

つのみであり, r({f}, {e}) = 1/2 · [1 + 0− 1/2] = 1/4,

r({d, f}, {e}) = 1/2 · [1 + 1/2 − 2/3] = 5/12である.

したがって v(f) ≤ 5/12である.

さて, F ∪ F ′ = ⟨A ∪ A′,→ ∪ →′⟩ を考えると, [5]

により, この AFにおいても v(c), v(f)の値は元の AF

におけるそれと変わらない. したがって c ≻M&T f

である. 一方で, adm(F ∪ F ′) = {∅, {d}, {d, f}} よ
り任意の E ∈ adm(F ∪ F ′)に対して c ∈ Undec(E),

f /∈ Atk(E)であり,f ∈ {d, f}であるから, v ∈ {2, 3}

に対し f ≻adm,v cである. したがって≻adm,vと≻M&T

は両立しない. comp(F ∪F ′) = {{d, f}}より, ⪰comp,v

と ≻M&T も両立しない. □

SAF 次に, SAFの説明をする. SAFとは, F = ⟨A,→
⟩に対し, パラメータ ϵ > 0を 1つ定め, v : A → [0, 1]

を,

v(a) =
1

1 + ϵ

∏
ai∈R1(a)

(1− v(ai))

を満たすように定め, a ≿SAF b ⇔ v(a) ≤ v(b)とした
もののことである. このような v は存在することは不
動点定理によって示されている. vは一意に定まると予
想されているが, 証明はされていない.

SAFに関しては一般的な結果は得られていないため,

部分的な結果のみ紹介する. ここでは, well-foundedな
AF (すなわち, グラフとして acyclic) について考える.

このときは順番に計算していくことによって vは一意
に定まるので, 次が成り立つ.

定理 6.3. F = ⟨A,→⟩ を well-founded な AF (グ
ラフとして acyclic) とする. このとき,≿σ,v (σ ∈
{grounded , comp}, v = 2, 3) は同じであり, ϵ > 0を十
分小さくとれば ≻σ,v ⊆ ≻SAF である.

証明. [1]より, well-foundedな F の grounded exten-

sionを Gとすると, A = G ∪ Atk(G)であるから, 前
半はよい. F の他の主張から attack されていない主
張全体を G0 = Def(∅) とし, F の grounded exten-

sionを Gとすると, ある N があって G = DefN (G0)

である. M = maxa∈A |R1(a)| とする. ϵ > 0 を
(M + 1)N ϵ < 1/2となるように定める. a ∈ Defn(G0)

に対し v(a) ≥ 1 − (M + 1)nϵであることを帰納法で
示す. n = 0 のときは 1 − ϵ < 1/(1 + ϵ) より明ら
か. n ≥ 1 に対し, a ∈ Defn(G0) とすれば, v(a) =

1/(1+ϵ)·
∏

ai∈R1(a)
(1−v(ai))である. 各 ai ∈ R1(a)に

対し,ある b ∈ Defn−1(G0)があって b ∈ R1(ai)である.

帰納法の仮定により v(b) ≥ 1−(M+1)n−1ϵであるから,

v(ai) = 1/(1 + ϵ) ·
∏

bj∈R1(ai)
(1− v(bj)) ≤ 1− v(b) ≤

(M +1)n−1ϵである. したがって, |R1(a)| ≤ M に注意
すれば

v(a) =
1

1 + ϵ
·

∏
ai∈R1(a)

(1− v(ai))

≥ (1− ϵ)(1− (M + 1)n−1ϵ)M

≥ (1− (M + 1)n−1ϵ)M+1

≥ 1− (M + 1)nϵ

となる. ここで, 最後の変形において不等式 (1−x)n ≥
1− nxを使った.

したがって, 各 a ∈ G = DefN (G0)に対し, v(a) ≥
1− (M+1)N ϵ > 1/2である. 一方, 各 b ∈ Atk(G)に対
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し, ある a ∈ Gがあって a ∈ R1(b)であるから, v(b) =

1/(1 + ϵ) ·
∏

ai∈R1(b)
(1− v(ai)) ≤ 1− v(a) < 1/2であ

る. よって a ≻σ,v b (σ ∈ {grounded , comp}, v = 2, 3)

ならば v(a) > v(b)であり, a ≻SAF bである. □

以上をまとめると表 2となる.

≿adm,v ≿comp,v

Cat − −
Dbs − −
Bds − −
M&T − −
SAF 未 解 決

(✓(grounded

で well-

foundedな場
合))

✓(well-

foundedな場
合), 未解決
(その他の場
合)

表 2: ranking semanticsの具体例と Dung rankingの
関係 (✓は一方が他方より強力, ×は強力ではないが両
立, −は両立しないことを意味している.)

表 2は SAF以外は “−”であるが, SAFに関しては,

SAFの方が Dung rankingより強力である場合がある
のが興味深い.

SAFは ϵの値によって結果が異なるが, Dung ranking

との関係でいえば, できるだけ小さい方が相性が良い.

なお, ϵ = 0の場合は, complete extensionの要素の v

の値を 1, それ外の要素の v の値を 0とすると, v は不
動点となる.

7 結論

本論文では Dungの semanticsから自然に導かれる
rankingとしてDung rankingを提案した. Dung rank-

ingはほとんど比較不能となる場合もあるが, 比較でき
る場合はそれと齟齬がない ranking semanticsを使う
ことが望まれる. そこで, 齟齬がないことを「両立」と
して定式化し, Dung rankingと ranking semanticsで
一般的な公理や ranking semanticsの具体例との比較
を行った. その結果, 両立もしないものが多い一方で,

Dung rankingと両立する公理や ranking semanticsが
あることを明らかにした. 今後の課題としては, SAFに
ついて,より一般的な場合を解決することがあげられる.

well-foundedな AFについては groundedと complete

で SAFよりDung rankingが強力であるのは良い性質
である. それを考えると, この良い性質を保ったまま,

well-foundedという制約をどこまで緩めることができ
るかが, AFの構造としてどこまで一般的な構造を考え

るが妥当であるかを考える一つの判断材料となる可能
性も考えられる.

参考文献

[1] Phan Minh Dung. On the acceptability of ar-

guments and its fundamental role in nonmono-

tonic reasoning, logic programming and n-person

games. Artificial Intelligence, 77(2), pages 321-

357, 1995.

[2] Elise Bonzon, Jérôme Delobelle, Sébastien
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