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概要 : 観光案内などでは，訪問すべきスポットだけでなく訪問順序や移動経路も同時に決定す

る必要がある. この様な，スポット推薦を伴う経路推薦は，観光の分野や日常生活においても需

要が高いにも関わらず，問題の定式化の難しさから一般化された手法は十分研究されていない. 

目的地を巡回する問題については巡回セールスマン問題(TSP)として多くの研究がなされている

が，事前に決定したスポット全てを通る経路を発見するためそのまま適用することはできない. 

本研究ではスポット推薦を伴う経路推薦に対し，確率場による定式化を行い，焼きなまし法等

を用いた解法を提案する 

1 研究背景 

交通手段, 情報収集手段の発達に伴い, 個人が気

軽に未知の土地を訪問できるようになってきてい

る. しかしながら, 個人の趣味嗜好というよりは知

名度の高い場所が優先的に選択肢へ上がりやすい

という昔からの状況は依然として変わらず, 当該

の観光地が混雑する状況を招き, より個人の趣味

に一致した場所や経路の選択機会を喪失している. 

さらにこのような状況が続けば, 観光地としての

価値を追求する動きが起こり, その土地本来の良

さよりも宣伝性の良さを狙った街作りになる等の

弊害も想定され, 訪問者, 現地民双方にとって良い

状況とは言えない. このようなことは旅行等の比

較的大きなイベントでなくても, 何気ない街や自

然の散策, テーマパークの楽しみ方等でも見られ

る. また, スポットを最短時間でより多く回れば個

人の満足度が高くなるというわけでは必ずしもな

く, 途中通過する街並みや, 道の景観等も観光, 散策

において重要な要素である. 従って, 個人の嗜好や

時間的制約などに基づく, 画一的ではない経路推

薦手法が必要と考える.  

観光経路の推薦では訪れるスポットの選択, 訪

れる順番, 総所要時間等に関する要望, スポット以

外の道や景観, 混雑状況に対する暗黙的な好みの

反映等多様な要求を含んでおり, 一般に取り扱う

ことが難しく, 定式化の研究は十分になされてい

ない. 目的地を巡回する問題については巡回セー

ルスマン問題 (TSP: Traveling Salesman Problem) [1]

として多くの研究がなされているが，事前に決定

したスポット全てを通る経路を発見するため，所

要時間のバランスを見ながら訪問スポットを選択

するといったような調整を行いにくい．ノードに

価値を付加し, 総経路負荷が目標値を超えない中

で , 価値の総和が最大となる経路を選ぶ問題は

Selective Traveling Salesman Problem (STSP) [6] [7]と

して定式化されているが, 本問題は所要時間が目

標値を超過することが許されず, 制限時間の明確

でない観光案内へそのまま適用するには不適当で

ある. また, スポットの価値と時間依存性を含む問

題を観光経路最適化問題 (ORPS : Optimal Routing 

Problem for Sightseeing) として定式化することが提

案されている[2]. より実用的なシステムとしては

CT-Planner [3] が提案されており, 各スポット間を

結ぶ最短経路をあらかじめ求めておき, スポット

をノード集合とする完全グラフの中で, 遺伝的ア

ルゴリズムを用いて観光経路を求める手法が用い

られている.

これらの既存研究は観光経路の決定を, スポッ

トをノードと見立てたグラフ上の経路問題を解く

ことに帰着している. 文献[2]の定式化はノードの

選択や順列の定式化が複雑となっており, 一般性

に欠ける. また, 文献[3] の手法はスポットのみに着

目しており, 経路に対するユーザの好みに応じた

推薦を行うことは想定していない. 本稿では, 経路

を構成する辺に対して目的関数を作り, これをエ

ネルギー関数に含む Boltzmann 分布から経路が生

成されるとモデル化する. 既存研究ではスポット

間の経路は移動負荷を持つものとして幾何学構造

と切り離されて考えられているが, 本稿では地図

上のすべての道にユーザの好みを反映するという
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大規模な問題を想定している. また, 確率場として

定式化することで各種統計, 機械学習手法が適用

可能となる. 本稿では, 解法として局所最適化法を

用い, 確率場による定式化が Simulated Annealing法

の導出を容易にすることを示す. 局所最適化法は

滑らかな目的関数を持つ問題の効率的解法として

知られており, これを用いることは将来的に有用

であると考える. 目的関数の作り方を工夫するこ

とで , 局所最適化法を用いた場合でも Local 

Minimum 問題の発生を緩和できる手法を提案する.  

2 数学的手法と関連研究について 

初めに, 本稿で用いる数学的表記について述べ

る. また, Boltzmann 分布を用いた定式化を行うの

で, これについて説明し, その後経路問題を扱った

関連研究について述べる.  

集合𝐴とその直積集合𝐵𝐴 = {(𝑥, 𝑦)|𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴}

の関係を𝐵𝐴 ⊆ 𝐴 × 𝐴と表記する. 集合𝐴 と集合 𝐵の

差集合 𝐶𝐴𝐵を 𝐶𝐴𝐵 = 𝐴 ∖ 𝐵と表記する. 確率変数は

太字立体で書き, その実現値は斜体であらわす. ま

た, 多次元変数𝒙に添え字をつけた𝑥𝑖 ∈ 𝒙 はその要

素を意味する . 多次元 離散確率変数  𝐱 =

(𝐱1, 𝐱2, … … 𝐱|𝐱|)の部分空間 𝐲 ⊆ 𝐱 に対して, 取りう

るすべての状態についての和を∑ 𝑓(𝐱)𝐲 と書く. ま

た , 特定の , 複数の要素  𝐱𝑖 ∈ 𝐱, 𝐱𝑗 ∈ 𝐱については 

∑ 𝑓(𝐱) 𝐱𝑖,𝐱𝑗
 のように書き, 𝐱𝑖, 𝐱𝑗の状態が互いに独立

でない場合は ∑ 𝑓(𝐱)(𝐱𝑖,𝐱𝑗) のように書く.  

変数 𝐱 についての目的関数𝜙(𝐱) を最小化する

問題を考える . ここで , (1)式で与えられる

Boltzmann 分布を考える.  

𝑝(𝐱) =
exp {−

1
𝑇

𝜙(𝐱)}

𝑍𝑝(𝑇)
(1) 

 𝑍𝑝(𝑇) は分配関数であり, (2)式で与えられる. 

𝑍𝑝(𝑇) = ∑ exp {−
1

𝑇
𝜙(𝐱)}

𝐱

(2) 

𝜙(𝐱) についての最適解集合を𝒳tとする時, (1)式

は温度 𝑇 → 0  の極限で(3)式となることがわかる. 

𝑝(𝐱) = {

1

|𝒳t|
where   𝐱 ∈ 𝒳t

0 where   𝐱 ∉ 𝒳t

(3) 

(1)式の分布を解析的に求め, 直接最適解を得る

ことは困難であり , 一般に焼きなまし  (SA: 

Simulated Annealing) 法 [5]を用いて近似解が求めら

れる. 焼きなまし法では(4)式を用いて表される条

件付き確率を用いて, 温度Tを徐々に低下させなが

ら Markov Chain Monte Carlo法を適用し, 𝑇 → 0  で

の分布を近似する  

𝑝(𝐲|𝐱 ∖ 𝐲) =
exp {−

1
𝑇

𝜙(𝐱)}

∑ exp {−
1
𝑇

𝜙(𝐱)}𝐲

(4) 

次に, 観光案内に関連する経路問題について述

べるが, これらを Boltzmann 分布により定式化, 解

く方法は 3節の提案手法で述べる.  

与えられたノードをすべて巡回する最短経路を

求める問題は巡回セールスマン問題 (TSP) として

広く知られている. TSPである必要条件は各ノード

間の負荷が定義されていて, すべてのノードを巡

回する経路のみを解として認めることである. 2-

opt法 (k-opt法) [4] は TSPを解く局所最適化法の 1

つであり, Fig. 3 に本手法が動作する様子を示す. 2-

opt法は, 隣接しない 2つの辺を選び, 経路が開始点

から終止点まで連続している状態を保つ入れ替え

方のうち, 全体の負荷をより小さくするものへ置

き換える操作を繰り返すことで最適化を行う. し

かし, 観光案内では, すべてのノードを巡回する経

路が求められるわけではないので, TSPとして定式

化することはできない.  

1 節で述べた文献[2]では STSP の発展型として, 

観光経路最適化問題を ORPSとして定義している. 

また, ORPSが NP困難であることを示し, 解析的手

法による厳密解法と発見的手法による近似解法に

ついても述べている. しかしながら, 定式化はノー

ド集合を基準としたものであり, 本稿が提案する

辺集合による目的関数の定式化に比べ条件設定が

必要であり煩雑となっている. CT-Planner[3] では, 

最適化手法よりもユーザとのインタラクティブ性

を重視している. ユーザの好みを知らない状態か

ら開始し, ごく少数の質問に対する回答に基づき

推薦をしながら, 段階的にユーザが経路を最適化

できるような設計指針を持っている. また, ユーザ

が観光地情報を拡張可能なインタフェースも提供

しており, 所定の書式に従った表形式ファイルを

用意することで新たなスポットを追加できる. 最

適化手法としては遺伝的アルゴリズムを用いてお

り, データベース内にある任意の観光スポット間

の移動負荷をあらかじめ求めて置き, 滞在時間と, 

ユーザごとに異なる価値が与えられた各観光スポ

ットをノード, ノード間の辺に重みとして移動時

間が割り当てられた完全グラフとして目的関数を

定義, ユーザが指定した所要時間以下で価値の総

和が最大となる経路を求めている.  
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3 提案手法 

本稿で対象とする問題は, 総移動時間及び目標

総移動負荷の制約がある中で, ユーザの経路に対

する満足度を最大化するものを推薦することであ

る. 推薦スポットは, 従来ノードに価値を付加する

ことで表現していた代わりに, 本稿では仮想的な

辺, あるいはスポット内の実在経路上, 例えば博物

館の中の通路等に価値を割り当てることで表現す

る. Fig. 1 にスポット内へ仮想経路を配置した図を

示す. スポット内の仮想経路の価値はユーザの好

みに応じて変化させることで, 喫茶店のような滞

在時間の変動が大きいスポットにも冗長な経路を

巡回する問題として対応できる. 3.1 節では辺に対

して定義されるこれらの重みから, 目的関数を定

義し, これをエネルギー関数とした Boltzmann 分布

を用いて, 経路は確率的に生成されるとモデル化

する. 3.2節では TSPに適用した場合, 3.3節では局

所最適化法を適用する場合の目的関数を紹介し, 

3.4 節で 3.3 節までのものに加え, 辺に負荷された

価値と総所要時間の制約を考慮した目的関数を示

す.  

3.1 Boltzmann 分布と経路の定義 

地図を構成するノード集合を 𝒩 とする. 各ノー

ドを結ぶ辺から構成される, 終始点を通る有効な

経路を含むベクトルを, 𝒆 = (𝑒1, 𝑒2, … 𝑒𝑖 … 𝑒|𝒆|), 𝑒𝑖 ∈

𝒩 × 𝒩   と表す . Fig. 2 に示す例では , 𝒩 =

{1,2,3,4,5,6} , |𝒆| = 5 の場合に以下のようになる. 

𝒆 = ((1,2), (2,3), (3,4), (4,5), (5,6)) 

3.3 節で示す経路への辺の追加などに対応する

ため, 辺ベクトルは経路に含まれない辺を含む. 例

えば, |𝒆| = 𝑛の場合以下のようになる.  

𝒆 = ((1,2), (2,3), (3,4), (4,5), (5,6), 𝑒6, 𝑒7 … , 𝑒𝑛) 

𝑒1から𝑒5のみで有効な経路を構成する. 辺の方向

は第 1ノードから, 第 2ノードへ向かうものとする. 

𝒆の確率変数を𝐞とし, その分布𝑝(𝐞)を(5)式で与え

る.  

𝑝(𝐞) =
exp {−

1
𝑇

𝜙(𝐞)}

𝑍𝑝

(5) 

𝜙(𝐞) は目的関数であり, 経路 𝐞 に対する制約を

定義する. 𝜙(𝐞)の値が小さいほど𝑝(𝐞)の値が高ま

り, そのような経路が選択される確率が高くなる

ことがわかる.  

3.2 TSPへの適用 

TSP において目的関数は経路上の辺𝐞𝑖 ∈ 𝐞に割

り当てられた重み𝑓𝑐(𝐞𝑖)の総和で与えられ, (6)式と

なる. 一般的にはグラフ上の辺に割り当てる値の

ことを重みと呼ぶが, 3.4節で説明するように, 本稿

ではユーザの好みも辺に割り当てることから重み

は多次元量となり, それぞれ負荷, 好みのように呼

ぶことにする.  

𝜙(𝐞) = ∑ 𝑓𝑐(𝐞𝑖)

𝐞𝑖∈𝐞

(6) 

TSP を解くために提案された 2-opt 法を用いた

SA 法を導出する. 局所最適化対象の 2 辺を確率変

数𝐞𝑖  ∈ 𝐞, 𝐞𝑗 ∈ 𝐞で表し, これらを除いた辺ベクトル

の部分空間 𝐞 ∖ {𝐞𝑖 , 𝐞𝑗} により条件つけられた, (5)

式に対する条件付確率は(7)式により与えられる.  

𝑝(𝐞𝑖 , 𝐞𝑗|𝐞 ∖ {𝐞𝒊, 𝐞𝒋}) =
exp {−

1
𝑇

𝜙(𝐞)}

∑ exp {−
1
𝑇

𝜙(𝐞)}(𝐞𝑖,𝐞𝑗)

(7) 

ここで, 𝐞𝑖 , 𝐞𝑗の取りうる状態について考える. 経

路が開始点から終止点まで連続している状態を保

つ必要があり, その遷移状態の組み合わせは Fig. 3 

に示す “ok” と書かれた 4つしかない. 許されない

遷移状態は, 開始点を含まない閉じた経路ができ

てしまうもの, 経路の巡回方向と一致しない辺の

 

Fig. 1. Virtual redundant loop in spots 

 

Fig. 2 An example of route. 

 

Fig. 3 The restriction to the edge’s status. 
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方向となるものであり, その一部のみを例示した. 

ある辺 𝐞𝑡 ∈ 𝐞を構成する 2 つのノードを𝑎𝑡 , 𝑏𝑡と表

し, (8)式に 𝐞𝑖 , 𝐞𝑗  の取りうる状態を示す.  

(𝐞𝑖 , 𝐞𝑗) ∈ {
((𝑎𝑖 , 𝑏𝑖), (𝑎𝑗 , 𝑏𝑗)) , ((𝑎𝑗 , 𝑏𝑗), (𝑎𝑖 , 𝑏𝑖)) ,

((𝑏𝑖 , 𝑏𝑗), (𝑎𝑖 , 𝑎𝑗)) , ((𝑎𝑖 , 𝑎𝑗), (𝑏𝑖 , 𝑏𝑗))
} (8) 

𝐞𝑖 , 𝐞𝑗に対して変更があった場合, 経路上のほか

の辺に対しても巡回方向が正しくなるように修正

を加える.  

温度𝑇 を減少させながら, あらゆる辺の組み合わ

せについて(7), (8)式で定義される確率にしたがい

辺を入れ替えることを繰り返すことで, 最適解を

近似的に得ることができる.  

3.3 辺の経路への追加と除外 

本稿では局所最適化法により観光経路問題を扱

う方法を提案する. 局所最適化法では一度に扱え

る変更幅が小さく, 複雑な経路問題に対しては一

般的に適用することができない. 本稿では辺の, 経

路への追加および除外過程を導入することでこの

課題に対処する. 経路を局所最適化法により少し

ずつ拡張していくためには, 途中, 地図上に実在し

ない非存在辺を一時的に追加する必要がある. し

かし, 計算終了時, つまり𝑇 = 0の時には非存在辺

がすべて実在辺に置き換わっている必要があるた

め, 非存在辺における罰則𝑓𝑝(𝑒)を導入し, 負荷𝑓𝑐(𝑒)

と合わせ目的関数𝜙(𝒆)を(9)式とする. また, 非存在

辺においては𝑓𝑐(𝑒) = 0 とする.  

𝜙(𝒆) = ∑ 𝑓𝑐(𝑒)

𝑒∈𝒆

+ ∑ 𝑓𝑝(𝑒)

𝑒∈𝐞

(9) 

罰則𝑓𝑝(𝑒)に関して, 𝒔 を非存在辺𝑒の始点, 終点

を結ぶ実在最短経路, これに含まれる実在辺を𝑠𝑗 ∈

𝒔 とし, (10)式を満たすようにすることで, 𝑇 = 0 と

なったときに非存在辺はすべて実在辺に入れ替わ

る . ただし , 実在最短経路が存在しない場合 , 

𝑓𝑝(𝑒) = ∞ とする.  

𝑓𝑝(𝑒) > {
∑ 𝑓𝑐(𝑠𝑗)

𝑠𝑗∈𝒔

𝑤ℎ𝑒𝑟𝑒   |𝒔| ≠ 0

∞ 𝑤ℎ𝑒𝑟𝑒   |𝒔| = 0

(10) 

例えば, Fig. 2のにおいて, 𝑒 = (1,4) の時, 対応す

る実在最短経路は. 𝒔 = ((1,2), (2,3), (3,4)) となる.  

(10)式を満たす具体的な例として(11)式があり, 

本稿ではこれを用いた. 𝐶𝑝𝑏 , 𝐶𝑝𝑐  はともに定数であ

る.  

𝑓𝑝(𝑒) = 𝐶𝑝𝑏 (∑ 𝑓𝑐(𝑠𝑗)

𝑠𝑗∈𝒔

) + 𝐶𝑝𝑐 (11) 

また, 本稿では 2-opt 法により辺の追加と除外を

考慮するが, この場合, 辺の取りうる状態として

Fig. 3 に加え, Fig. 4も許可される. (a)は経路に含ま

れないノード 3 上に自己ループとなる辺があらか

じめ配置されている下で, この辺と経路に含まれ

る辺について状態の変化を考え, 経路にとって新

しいノード 3 に対して辺が 1 つ追加される過程を

表現している. 結果として経路に含まれないまま

の状態も許可される. また, (b) は経路内の隣接する

2つの辺の状態を, 一方の辺が自己ループとなるよ

うに変化させることで, 1つのノードが経路から外

れる除外過程を表現する. 3.2 節と同様にここでも

許可される遷移状態を “ok” と表し, 許可されない

ものについては一部の例を示した. この(a), (b)の方

法は, 初期状態として経路に含まれないノードに

自己ループ辺を与えておけば, 経路の拡張縮小を

繰り返してもノード上に自己ループ辺がある状態

を保つことができる. 例えば, Fig. 5は地図上に青で

辺ベクトルに含まれる要素を示している, 自己ル

ープ辺がノードにそれぞれ 1 つずつ配置されてい

た場合の例で, この図において以下のようになる.  

𝒆 = ((1,2), (2,7), (7,8), (3,3), (4,4), (5,5), (6,6)) 

 

(a) Adding 

 

(b) Removing 

Fig. 4 The restriction of edges’ status to add or remove 

an edge from the route. 

 

Fig. 5  An example of self loop edges. 
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各ノードを複数回通る経路を生成可能とする場

合には, この自己ループ辺はノードごとに複数個

用意しておく.  

Fig. 4 (a), (b)に描かれている状態の変化は, 同じ

規則に従っており, 𝐞𝑖 , 𝐞𝑗の取りうる状態を整理す

ると, (12)式の様になる.  

(𝐞𝑖 , 𝐞𝑗) ∈ {
((𝑎𝑖 , 𝑏𝑖), (𝑎𝑗 , 𝑏𝑗)) , ((𝑎𝑗 , 𝑏𝑗), (𝑎𝑖 , 𝑏𝑖)) ,

((𝑎𝑗 , 𝑏𝑖), (𝑎𝑖 , 𝑏𝑗)) , ((𝑎𝑖 , 𝑏𝑗), (𝑎𝑗 , 𝑏𝑖))
} (12) 

(12)式を見れば, 𝑎𝑗 =  𝑏𝑗もしくは𝑎𝑖 =  𝑏𝑖の場合

に自己ループ辺となり, 辺の追加による経路の拡

張に対応する. そうでない場合, 𝐞𝑖 , 𝐞𝑗 は隣接するの

で, 𝑎𝑗 =  𝑏𝑖もしくは, 𝑎𝑖 = 𝑏𝑗となる場合は辺の削除

に対応し, 経路の縮小を考慮できていることがわ

かる. 自己ループ辺を配置しておくことで, 経路に

対して辺が追加, 除外されることはあっても, 𝐞 を

構成する要素数は固定されることから, 辺ベクト

ルとして扱うことができ, 経路を含む辺の集合に

対する確率場を, 経路の拡張縮小を考慮したうえ

でも定式化することができる. なお, 自己ループ辺

を配置しておくことは, これら定式化における利

便性のために導入したもので, 実装上必ずしも必

要なものではない.  

なお, (10)式を満たさない場合, 非存在辺が最終

的に残る可能性がある. 𝑓𝑝(𝑒)を幾何学距離の関数

で近似することも考えられるが, (10)式を常に満た

すために, 𝑓𝑝(𝑒)を過大に設定する必要がある. この

時, 非存在辺への遷移確率を低下させ, 経路探索を

行いづらくなる. すなわち, 𝑓𝑝(𝑒) が(10)式の右辺に

近いほど経路探索を行いやすくなる. 𝑓𝑝(𝑒)はすべ

てのノード対に対して計算しておく必要があり, 

その記憶量, 計算量はO(|𝒩|2)となる. しかしなが

ら, 通常計算開始時に𝑓𝑝(𝑒)は一度だけ計算してお

けばよいため, この計算負荷は大きな問題となら

ない.  

3.4 緩和 STSP  

本項ではユーザの辺に対する好みを𝑓𝑑(𝑒) で与

える. 既存研究ではノードに対してスポットを表

現する値が付加されていたが, 本研究では経路負

荷を辺に対する関数𝑓𝑐(𝑒)として与えており, これ

との一貫性を取るために辺に対してスポットを割

り当てる. 同一ノードを複製した 2ノード間に距離

が 0の辺を考えることで, ノードに対して割り当て

たものと等価な問題を考えることができる. ユー

ザの好み𝑓𝑑(𝑒)を取り入れ, 目標移動負荷値Ccを導

入したエネルギー関数を(13)式で与える.  

𝜙(𝐞) =
𝛽

2𝜎2
{𝐹𝑐(𝐞)}2 + (1 − 𝛽) {𝐹𝑐(𝐞) −

𝜎2

2
}

− ∑ 𝑓𝑑(𝐞𝑖)

𝐞𝑖∈𝐞

+ ∑ 𝑓𝑝(𝐞𝑖)

𝐞𝑖∈𝐞

(13)
 

ただし, 条件変数 𝛽, 総移動負荷𝐹𝑐(𝐞)は(14)式で

与えられる.  

𝐹𝑐(𝐞) = |𝐶𝑐 − ∑ 𝑓𝑐(𝐞𝑖)

𝐞𝑖∈𝐞

| ,

𝛽 = {
1 𝑤ℎ𝑒𝑟𝑒 𝜎2 > 𝐹𝑐(𝐞)

0 𝑤ℎ𝑒𝑟𝑒 𝜎2 ≤ 𝐹𝑐(𝐞)
(14)

 

STSP では𝜙(𝐞)がCc で表される目標移動時間を

少しでも上回ることを認めないが, 観光における

経路推薦では妥当な近傍解は許容されることを考

え, (13)式のように総移動負荷𝐹𝑐(𝐞)に対して最小値

を持つエネルギー関数を導入する. また, (13)式は

移動負荷の増加に見合う 𝑓𝑑(𝐞𝑖)の値が得られるス

ポットに対し経路の拡張を許可する. 𝜎2は拡張規

模の許容範囲を表現する. また, 𝑓𝑑(𝐞𝑖) を導入した

ことにより, 𝑓𝑝(𝑒)の定義式(10)式を(15)式に変更す

る. また, (10)式を満たすための近似式として(11)式

の代わりに(16)式を用いる.  

𝑓𝑝(𝑒) > ∑{𝑓𝑐(𝑠𝑗) + 𝑓𝑑(𝑠𝑗)}

𝑠𝑗∈𝐬

(15) 

𝑓𝑝(𝑒) = 𝐶𝑝𝑏 (∑{𝑓𝑐(𝑠𝑗) + 𝑓𝑑(𝑠𝑗)}

𝑠𝑗∈𝐬

) + 𝐶𝑝𝑐 (16) 

𝑓𝑑(𝑠𝑗) は目的関数に対して減算されているので, 

罰則関数に加算することは奇妙に思える. Fig. 6に

𝑓𝑑(𝑠𝑗) を加算しなければならない状況の例を示す. 

(a)において, 赤く示されている辺は高い価値が設

定されている辺であり , 𝑓𝑑((2,5)) = 𝑓𝑑((5,2)) =

𝑓𝑑((3,4)) = 𝑓𝑑((4,3)) = 3  ほかの辺𝑒については
 

Fig. 6 An example where we have to add 𝑓𝑑(𝑠𝑗) 

to.𝑓𝑝(𝑒). 
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𝑓𝑑(𝑒) = 0とする. 実在辺の負荷は 1 とする. (13)式

において, σ2 → 0, 𝐶𝑐 = 0, (付録に詳細を記載) また

(11)式に𝐶𝑝𝑏 = 1, 𝐶𝑝𝑐 = 1を用いるとして, Fig. 6 (b)

に青で描かれた , 非存在辺を含む経路 𝐞(∗) =

((1,2), (2,5), (5,4), (4,3), (3,6)) の (13) 式 の 値 は 

𝜙(𝐞(∗)) = 2 , 望まれる実在辺のみの経路𝐞(𝑡) =

((1,2), (2,3), (3,6))  に 対 す る (13) 式 の 値 は 

𝜙(𝐞(𝑡)) = 3となり, 𝜙(𝐞(∗)) < 𝜙(𝐞(𝑡)) であることか

ら𝐞(∗)が選ばれてしまうことがわかる. 同じ条件で

(16)式を用いた場合は, 𝜙(𝐞(∗)) = 8, 𝜙(𝐞(𝑡)) = 3 で

あり, (𝐞(∗)) > 𝜙(𝐞(𝑡)) となるので, 𝐞(𝑡) が選ばれる

ことがわかる . また , (11)式の罰則定数𝐶𝑝𝑏 = 1 , 

𝐶𝑝𝑐 = 1をいくら大きくしても, 𝑓𝑑(𝑒)の大きな場所

があれば, 非存在辺が残る可能性をなくすことは

できない. 定性的には, 非存在辺を通ってでも, 好み

の経路を通った方が目的関数の値を小さくできる

ような状況を避ける必要がある, ということが言

える  

4 評価実験 

3.2節で説明した TSPへ適用した結果を Fig. 7に

示す. (a)は𝑇 = 0で計算した結果で, 2-opt 法に一致

するものであり, (b)は𝑇 = 0.093 で計算した結果で

焼きなまし法となる. 20行 20列の幅 1で置かれた

等間隔配置ノードからなる, ノード数 400の完全グ

ラフに対し, 全ノードを通り負荷最小の経路を求

めている. この時, すべてのノード対に幾何学距離

に等しい負荷が設定されており, 斜めの辺が 1つも

ない経路が最適解となる. (b)の焼きなまし法を用

いた結果がより最適解に近いことがわかる.  

Fig. 8 に辺の追加と除外の仕組みが機能してい

る様子を示す. 実在辺は薄い灰色で表示されてお

り, これら以外のノード対を結ぶ辺はすべて非存

在辺である. 開始点と終止点が設定されており, 開

始点と終止点がつながる経路のうち目的関数(9)式

が最小となる経路を求める. この問題の最適解は, 

37 ノードすべてを実在辺のみで通る経路である. 

(a)に初期状態を示しており, 初期経路として開始

点と終止点を直接結ぶ非存在辺からなる経路を与

えている. 𝑓𝑝(𝑒) を定義する(11)式のパラメータと

して, 𝐶𝑝𝑏 = 1.1, 𝐶𝑝𝑐 = 0.1 を用い, 𝑇 = 0 とした.  

この問題は, 罰則関数𝑓𝑝(𝑒)を幾何学距離で近似

した場合にうまくいかない複雑な経路上において, 

計算終了時に非存在辺が残らないことを検証する

ことを目的としたものである.  

Fig. 8 の(b), (c), (d) はそれぞれ 40, 200, 400ステ

ップにおける経路である. 開始点に近い辺を赤, 終

止点に近い点を青で, グラデーションを用いて可

視化している. 局所最適化を繰り返すうちに非存

在辺と実在辺の追加と除外を繰り返し, 最終的に

実在辺のみが残っていることがわかる. また, Fig. 9 

にエネルギー関数と総コストの変化過程を示す . 

総コストの上昇に対して, 非存在辺が消滅するこ

とでエネルギー関数は常に減少していることがわ

かる.  

 Fig. 10 に(13)式のエネルギー関数で表される緩

和 STSPを解いた結果を示す. ここでは問題を簡潔

にするため, 18行 18列の等間隔におかれたノード

からなるマス目上の地図を想定した. ノード数は

         

(a)                                               (b) 

Fig. 7 The result of TSP with SA and Markov Chain 

Monte Carlo. 

   

(a)                                   (b) 

   

(c)                                   (d) 

Fig. 8 The result of edge adding and removing. 𝑇 = 0 

 

Fig. 9 The graph of total value of 𝑓𝑐(𝑒) in the route and 

objective function. Red is the objective function while 

blue denotes the total value of 𝑓𝑐(𝑒). 
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終始点を含め 326である. σ = 5, Cc = 60 とし, 赤く

表示されている部分は𝑓𝑑(𝑒) = 2, 𝑓𝑐(𝑒) = 1 の辺で

あり , そのほかの薄い灰色で描画された辺は

𝑓𝑑(𝑒) = 0, 𝑓𝑐(𝑒) = 1 の辺である. これら以外のノー

ド間をつなぐ辺はすべて非存在辺である. (a)は計

算開始直後の状態であり, 温度𝑇 が高いことにより

発見的な経路探索を行っていて, 非存在辺も含ん

でいる. 斜めの辺はすべて非存在辺である. (b)は計

算終了時の状態であり, 非存在辺はなくなってお

り, 負荷の目標値として妥当な経路でスポットを

巡回する経路を生成していることがわかる.  

5 結論 

観光経路推薦に要求される, スポットの選択性, 

目標移動負荷および時間, 経路の推薦を含む問題

に対して, 辺の集合に対する確率場を Boltzmann 分

布を用いてモデル化し, 局所最適化法により経路

を生成する方法を示した. また, 本手法は, 辺に対す

るユーザの好みに応じた経路生成が可能なこと , 

ノードであらわされるスポットに対しても仮想的

な辺を配置することで経路推薦が行えることも示

した. 局所最適化法により効率的に解の探索が行

える本提案手法は，スケーラビリティに優れるた

め, 広域を対象とした観光案内や, 経路上のユーザ

の好みまで反映させる大規模な問題にも適用可能

と考える. 今後の展望としては棄却, 重点サンプリ

ング[8]を導入し, 近傍経路に対する確率場の評価

を重点的に行い, 遠方への辺検索に要する無駄な

探索を抑制することを検討している. また, 現在 2

辺の組み合わせによる最適化だけを考慮している

が, より多くの組み合わせを用いた場合について

検証する. さらに, スポットの価値が時間依存性を

持つ場合にも対応できるようにする. 最適化手法

だけではなく, 実際の経路推薦に適用された場合

のユーザの満足度等, ユーザとのインタラクティ

ブ性を考慮し, 経路推薦手法としての精度評価指

標も検討する予定である.  
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付録 

(14)式の条件のもと, 𝜎2 → 0 の極限を(13)式に適

用すると, (17)式となる.  

lim
𝜎2→0

𝜙(𝐞) = 𝐹𝑐(𝐞) − ∑ 𝑓𝑑(𝐞𝑖)

𝐞𝑖∈𝐞

+ ∑ 𝑓𝑝(𝐞𝑖)

𝐞𝑖∈𝐞

(17) 

また, 𝐹𝑐(𝐞) 中の定数 𝐶𝑐  を 0 とすれば, (18)式と

なる.  

𝜙(𝐞) = ∑ 𝑓𝑐(𝐞𝑖)

𝐞𝑖∈𝐞

− ∑ 𝑓𝑑(𝐞𝑖)

𝐞𝑖∈𝐞

+ ∑ 𝑓𝑝(𝐞𝑖)

𝐞𝑖∈𝐞

(18) 

 

  

(a)                                    (b) 

Fig. 10 The result of reducted STSP. The red edges 

have the weight of 𝑓𝑑(𝑒) = 2, 𝑓𝑐(𝑒) = 1 while graies 

have 𝑓𝑑(𝑒) = 2, 𝑓𝑐(𝑒) = 1 of it. 
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