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SIGIR2018-2016 #i&

SIGIR2018 SIGIR2017 SIGIR2016
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25— hR—)C— | 98/327 (30%) 121 104
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Industry track HiAEE4, 31883, RfFEE7, — AR5 HiFEE2, —i%12
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 Industry track/H2BRIIC - SNIERIBERZ. 700%8%
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SIGIR2018 34% Session 7C: Interfaces

Kazutoshi Umemoto et al., Search by
Screenshots for Universal Article Clipping in
Mobile Apps. [Umemoto2017]
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a)Search and Ranking (Core IR)

b)Foundations and Future Directions

d)Content Recommendation, Analysis and Classification

(a)

(b)

(c)Domain-Specific Applications

(d)

(e)Artificial Intelligence, Semantics, and Dialog
(

f)JHuman Factors and Interfaces

[SIGIR2018DL] p.iii
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Sl ;DY IRl (CistE, iRz X NS w DRliiRzD#ER
(a)Search and Ranking (Core IR)
(b)Foundations and Future Directions Submissions by Track
(c)Domain-Specific Applications (Best estimates for prior years)
(d)Content Recommendation, Analysis and Classification » Big Changes Compared with Past Years
(e)Artificial Intelligence, Semantics, and Dialog e B S e
(f)]Human Factors and Interfaces

KRB DZLh o>l b3SV . :

(d) O>F > \ViEE, o, D%E

BFIRBDZh>Tc bV

() BEABOIFE I I I
(f) Human Factors &1 >45—J1 (X ~ l“l

CorelR Foundaton/Future  Application Rec omymend atlon ruras

(a) (b) () (d) (e) (f)
[SIGIR2018DL] p.iii (SIGIR2018 Opening)
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The most popular call-for-papers topics
for accepted papers were ranking
algorithms (19%), text representation
(17%), behavioral analysis (15%),
recommender systems (14%), and user

studies (14%).
[SIGIR2017DL]p.iii

axXDREYD

FIRGEX (C 1 —Y(CEET 3N
HiZ. DDOEVEEN 5% < {A[a]

TN (15%)
- A—Y X577+ (14%)
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—1—3)I2RY MMCET 38R (SIGIR2016)

SIGIR2016&E & H
Christopher Manning( (X5 > J 4 — RKXF)
[S1&2, 3F(IFEFZNSIGIRZZELT D] &Fl

I'm certain that deep learning will come to
dominate SIGIR over the next couple of years -
just like speech, vision, and NLP before it.

[Manning2016] p.72, Final thoughts.
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—1—35)L3v MCE$ 38R (SIGIR2017)
SIGIRD:HX D S5, Neural IRICEEIT BDEDDE|IE(SIGIR'14-'17)

o

2017 (C 218
e $923%h ' Neural IRES:E

3 From the IR zodiac: « [Neural NetsdD£E |
g - - . — The year of the
25 & - NEVEIRNES
Q3
[+ o — 0
oL ~
2%
- - l
1%
- _# E 2016 2017
Year
An Introduction to Neural Information Retrieval. Bhaskar Mitra and Nick Craswell, in

Foundations and Trends® in Information Retrieval, Now Publishers, 2017 (under review).

[Mitra2017]

Copyright (C) 2018 Yahoo Japan Corporation. All Rights Reserved.
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A EZ1—3F IRy MEE

—1—2I)LRY EEDR

5 SLEX
 TJLR—)C—D #46.0% (40/87)
- TOISDHMNEEHD & #144.1% (45/102)

w3 > EAgODH
« I)NR—)\—TEFFo=-h)Iltv>3a>on
$973.1% (19/26)
- TOISOHNEEHD & FH#I80.8% (21/26)

- AR FIEARN(C(FF—T— RR—X(‘neural net’,
‘deep learning’) T, future work& U CEIFI=BDE,3E
2 EBSB(CHIBITEDIBEDDHRUNE.

- v 3> BEOB T Learning to Rank I(1D)
&Learning to Rank II(3D)(d&Fx&EHTIEYVEI 32 &
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Data Science for Social Good & Public Policy: Examples,

Opportunities, and Challenges

iEEE . Rayid Ghani K(S A0 KXAZFLENZL)
- Center for Data Science & Public Policy®>« L2045 —
« A) N KRBEDIREF 7 > R—2(2012F)DF—F YA T AF—LAOHFILAY)
s NHBERYHEM(CA > )\D bDH DT —FH A T ADOBACEDABOATEDBEKRE. 1BIL < JHHE

sl —~ V=2 vILTY RERHEBRDIZHDT —FHT AT X
WIRFB & — YA T2 A TBERPHEREREZ FR Y DHUHADFETT

HEDOREREN AR TDTHIR— MR EREFZRDIFTSD (US)
B—EXEBBELTVWDADYYF>Y  (SEDESOL: AFZ ODHEHFER)
BEDERENSBERMBFICIRE SNt FRIL T 7 ([CDIRTD (BT RM) F

SEBRIA—NDAINRSZE
«  FHEIZITTRATEIOZELICDIRAITD
- EFROMWMFEES X7 AICEHRIEEIRFEDRFE
-  FHIZEERBARIEE(interpretable)(C 9B

o J\A 77 XDIWN cf. fairness, equity (A1E) F % 1: Research Assistant Professor
[Ghani2018]
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(Salton Award Keynote)

Information Interaction in Context
sEEE . Kalervo JarvelinEk (5 >R KEHIT)
- [BIRIER (Information Seeking), BIRIRROFHUA TE R

Gerald SaltonE :

e e A i b g = e i TROFAZE [CHk e [CIBE R B E 1T > T
Iﬁﬁlﬂﬁ%@ﬁm Iiﬂ)nﬂﬂﬁ_}ai‘mn DCGOERYID/\—=3 > ZiExR I
([Jarvelin2002], [Sakai2015])

s B ;

IBHRAE - [BERIRZRDIAFTDIR DR D
- [BERRIE . NHZABEOEEOXROP CEHRIREZ L, TNb&
125502329 diTAE(actors) & U TR I DF M EF
- 11— EmOFHiiEZR(nDCG)
ARBIRDTDIN T A =R ABEC(EISF O TWRELITTRLS, 1Y
DX IRDZEEHNWE (= The Turn*?)
- Kelly’s Continuum™2: 'Information-seeking Behavior in Context’
( [SZhfve 2 8 ([CHRTF ) LT ISR ERSRITEN DI T ] *3) e e e L

*2: [Kelly2009] p.10, Fig.2, Research
continuum for conceptualizing IIR research.
*3: [Joho2011] p.9, IIRTAFLDIEREAK.

[Jarvelin2018]
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(Salton Award Keynote)

Information Interaction in Context

1BHRDA > HF S0 3> (CET DERITDIATT
- JOZ U b 555, DFEE, H#E8EE, TR/RE
- Task-based Information Interaction
- NDTEENZE S AT LANEDK S ([CHIR— hIAREH
“where should the person stop and the information [interaction — KJ] interface start”
( [Jarvelin2018] p.2 )

+=A
i ofl

- [BHRIRZR DA TIENICEADDEIDH EE.
- NRDEE, £7F, [BROA >S50 3> ORLZEBFERC LT, AFPERZY/R— NI Db
THADINRE.

[Jarvelin2018]
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F1—bMUP)LHE

Fai—bMUZL

2

Knowledge Extraction and Inference from Text: Shallow, Deep, and
Everything in Between

GRS - HEaw

Probabilistic Topic Models for Text Data Retrieval and Analysis

SF R T —IEFR - oirElHESRS
EwvoFEF)L

SIGIR 2018 Tutorial on Health Search (HS2018) — A Full-day from
Consumers to Clinicians

EE - RRICH T DIRR

Conducting Laboratory Experiments Properly with Statistical Tools: An

Easy Hands-on Tutorial

Hath)Y — L& UL\ D (RERE ) EERD 7%

Information Discovery in E-commerce

EONV—XICHEITDEHRFER

Deep Learning for Matching in Search and Recommendation

REFEDRREBEE(ICHITDIIYYVF T
DI

Generative Adversarial Nets for Information Retrieval: Fundamentals

and Advances

RO BY R N —2T(GAN)ZRWZIE
FRIRZR

Tutorial on Utilizing Knowledge Graphs for Text-centric Information
Retrieval

Knowledge graphzRW\z7F X MNEER
EES

Neural Approaches to Conversational Al

—a1—3I)LRY RAVEXIEERAL

Efficient Query Processing Infrastructures

HERE RO T IR DEE

Fusion in Information Retrieval

IRICHITDITa1—>3>
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F1—bMUPI)L(Deep LearningBEiE)

Deep Learning for Matching in Search and Recommendation

ARR(ICHBITDINYYF I EHEBICHITBRINYFOIEERD IZ1 "7+ (SIGIRERecSys* 1) T
HTE=NTULD
- FERDBREDOYYF U EHBONYY F U (M —NRRR CEIBETEDI TR
‘J?/00)11:%"3?,5’]Tcki/fb\bﬂ—ﬁ@uk}:”“@?/ﬂif%#EEEE

* 1 : ACM Conference on Recommender Systems [TutorialDL]
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SIRIP(Industry days)

- (PFETDIRDILH

B (IARSFERBIR(CT O HIL Y S 3 > EillifT U CRHE

- SOl(F2B M (Industry Days) cf. SIGIR2016, SIGIR2017 (&1 H
- BifiEE, BiFaEE —ivDEE
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Product Question Answering Using Customer

Generated Content - Research Challenges

[&Z3&] David Carmel, Liane Lewin-Eytan, and Yoelle Maarek (Amazon)
[BIE] 7LoY>3wE>ZJ(Alexa Shopping)DrEaa(CBE9 2QA(Product Question Answering)DIAFTDFBETT
[FRFED T A —HA] FEm(CET 2EBNRER (subjective questions)

Bl BDWMDT AT« PADERR, BmbDI RINA X, thE, BmdEV\G, BmODE T ITHADIA hNE
[BIZF(CEST—F] HHYOY, web>—4, LEDI—, QASE
[ B iR ZR DA TR ]

- BEAA—TJITARADI L > MY —REIELER
- DR UTCERED BN S DEIELERK
X PN TIvE

[FERR/RER (CRE T DERE]
- EHOE =N S DEIZE (multi-aspect answer)

+ SH [Carmel2018]
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Lessons from Building a Large-scale Commercial IR-based

Chatbot for an Emerging Market

[Z%&] Manoj Chinnakotla and Puneet Agrawal (Microsoft)
[BIZ] 1> RfizmElFdChatbot “Ruuh” (2017828 ~)DREFEDIEIT i

[EREBRL] RBRN—X
AYT—DEREDRT AT I , MRHEE, S>F>0

[-1 > RHEADEIL ]
- BEEBNZ L \WBFF(KIROARR) ERRDICIF. BICESURIGEZIRIZITTEARTD

- twitterFEDEST —SFDIL D20
- IWEMRFE(77FIL ND— R, AEER, REHRBEREE DD, BIEERERIR)
- AAZIFERTBEIRBHR(B : XA—ILT7 RL R, EFEES)
- FRRICIITERWCEZEDWH : EEFIT DR, A—ILTDLK, F)
« 1—HD> T 7 UFCEURPCHIBADIA S hZROSNDRE. REPERODEXRENEIFIND

- SEN LW RIED3. 5% CI— RIS IJREMEEBDRES D IERE)NHD
¢ /—I_Q‘\J '\b\j_ FEU?)QTFE%@’% &%Uﬁﬁﬁ]ﬁquEbGOo/oi_CJ:D\é [Agrawa|2018]
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D—03,3v I e
T A U1

CAIR'18 RBEADMEEN 7T O—F . JIFF— > DEMIRIEDE, XILFE—FIL1>
SA—TJxA1X.

ECOM’18 2 ZH eOV—X(BmIREREIRIR).

ProfS2018 1 £H SFEDBTFOEPIKICKDIEHIIMRR.

KG4IR 2 %£H ®XFRETDknowledge graph# /.

BIRNDL'18 3 ¥H BARASHEWEIRYAI>MANIIR,FTFIRAZ2T HBEICKDEMHR
DIRER/ DAT/ARZR.

CompS’18 *¥H Computational surprise(BEDEEZ1L, EDOKD(CUTIRICEDIADH, ).

B8 BEt/FHEE TN —YDIRE
¥H HEAR%TRAT IR SRR,

Intelligent Transportation +H BERRKECETDEREBIROES, e, 21.
Informatics

DATA:SEARCH'18

EARS'18

e N T

Learning from 1 #H J[ROEHDESNET—FEEEAXDZNT—FINEDES.
Limited/Noisy data for IR

- R
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Rakuten Data Challenge

[ AT R—="] https://sigir-ecom.github.io/data-task.html
[(M1E] BmEY N SEmOANT IV ZFATIMBFELEDT—FF v L2,
BT UIIDDOARMES (leaf(d3,0005%)

BERYA NLEDFTUIDDCZDART(0.8M)THEE LT, X NADERY A ML(0.2M)D
AFTUEHET DI, KihETHETCERIEEDOHERET S,

[%55R] 14 Skinner [Skinner2018]
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Recommender Systems Autonoma de Madrid )
Best Short Paper Cross Domain Regularization for Daniel Cohen, Bhaskar
Award Neural Ranking Models using Mitra, Katja Hofmann,
Adversarial Learning W. Bruce Croft
Test of Time Award Improving Web Search Ranking Eugene Agichtein, Eric
by Incorporating User Behavior Brill, Susan
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Fairness & Robustness

14 ML

Should I Follow the Crowd? A Probabilistic Best paper
Analysis of the Effectiveness of Popularity in
Recommender Systems

Log Analysis Understanding and Evaluating User
Satisfaction with Music Discovery
Behavior Between Clicks and Satisfaction: Study on

Multi-Phase User Preferences and Satisfaction
for Online News Reading
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Best Paper Award Should I Follow the Crowd? A Probabilistic Analysis of

the Effectiveness of Popularity in Recommender Systems

Session : Fairness & Robustness

[&3&] : Rocio Caflamares, Pablo Castells (¥ RU—RKHE
BARF)

[E] : #HES X5 A Tpopularity( Au)ZFHVWBRIERICD
WLWT, T—41tw MMZHEpopularity®D)\1 7AW B &(C

SEB U, Bimr )7 JO—F ciEsniz, popularity i s8R %=
ED/BIERVWERHEDIRZ IS5 RY -2 TYERR U

12)\A 77 A= HEbR U Te 5~ — & THREL.

[B5] : b8, HESXTLADOFHIYI7)LTYU XATIEAR
(popularity) WERENDZ—7, /N1 7 XEUTEDERIAN
T EITDRTREH D, FEANHTULRL)Y.

[#&&m] : popularity IR ZE DM ESMNI—HTRD SN
TRUN,

[Canamares2018](slide) p.14, p.24

Observed vs. true \\ Expected Random ) Depend- Theoretical
A L . Rankings . ety
metric values precision variables /" / encies findings

Observed metric value = True metric value

1r ? 1r
Items Items
.I
= - ® Relevant
2 |'m < -y =
a . @ o = Non relevant
> > ma Missing ratings
| = - - |
| | =) | }

Computed on available
user taste observations

Computed with full
knowledge of user tastes

Data - Crowdsourced dataset

* We build a dataset free of observational (popularity) bias
1. We sample 1,000 music tracks from deezer.com uniformly at random

2. We ask anonymous workers on CrowdFlower to rate 100 tracks each,

sampled uniformly at random

—  ~100 judgments per user
li hi ?
X ~100 judgments per track Homdlol y‘ou I:kc this song &
sally like \
= ~100,000 judgments total It's nice, | enjoy listening to it A
CrowdRower

+ CM100k dataset available at
http://ir.ii.uam.es/cm100k
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Understanding and Evaluating User Satisfaction with

[Session] Log Analysis

Table 1: Set of interaction features used to cluster users by

[Z%&] Jean Garcia-Gathright, Brian St.Thomas, Christine Hosey, Zahra goal.
Nazari(Spotify), Fernando Diaz(Microsoft Research) Within rec. Description
completed plays Tracks played to the end.
= 14 === — \r \y N — =] N\ =[E Skl T k kl d int.
[I2] BEMEES RS AOKER DD, I—YDEEE(CRET DFMAAESE ks Toacks skinmed within the frst 30 seconds
£ = = TN = NE[l total plays Total played and skipped tracks.
ﬁ*ﬁ% géb-m ! /ﬁEE%%IAJ click skips Tracks skipped by clicking on another track.
. . _ . . o button skips Tracks skipped by using the forward button.
c1—YA>AAE1—" SponyO)j_—‘U‘( 1044 ) ZNER(C , HEIHEOF | BHE® , B continuations gracks co;x:p(l;ted by continuing t;athe next track.
. R “ L _ rec. views isits to the discovery recommendations.
U/ B —TKERA, 1 —AREROBENIENICEARNIRITE Z X H CHREA. adds Tracks added to a playlist.
saves Tracks saved to the user’s library.
8 - ww —_ —_ ® — Dow: Descripti
- A—HH—-RA(A-—FEUFT A X557 ) : 1—H18,5472%FFRICHAEN  —fomviers Vit b a trackes album paze.
é: /ﬁﬁﬁrﬁ_ (i@%ﬁz é:/:_é'ﬁ:) 7& EEJE . :rmn:: views count  Visits to a track’s artist page.
completed plays Downstream plays of a track’s artist.
. J:gﬂd)gﬁlﬁfﬁ%%%ﬁ?fﬁ, ﬂguﬁq E E’\] %}Hﬂ Il:l:ll . skips Downstream skips of a track’s artist.
quick skips Downstream quick skips of a track’s artist.
® — e ! _ ~ A Sy— total plays Total downstream plays and skips of a track’s artist.
- 1—H(#9140,0002) DITENEIEST —F (40F%RM) 20 S AP I T, ADEEIRL e
— o v leted pl D tr 1 f a track.
TSI BFIABNICTY E> . ips  Dovnstream sips o a track
quick skips Downstream quick skips of a track.
- I-SONABNEATHT — SN SBREEFA T 3HEHETI LR, oialpleys_ Toal downstreampleys and ks o a
=) =g . . .
HEARODFHI. [Gathright2018] p.58, Tablel: Set of interaction

features used to cluster users by goal.
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Understanding and Evaluating User Satisfaction with

Music Discovery

[FoNZRRDAEI](1/2)
- BEMES T LAD4DDFHBR
- FIABRC KD CA—UITEINERLED

Interaction Features Normalized Features

I I Four main goals emerged; behaviors differ by goal.
. .

artist completed plays -
artist skips -

artist quick skips -
artist total plays -

Goal: Play new Goal: Listen to new Goal: Find new Goal: Engage with

track completed plays -
] background music music now and later music for later new music
track quick skips - ;
track total plays - ‘|. a4 No skipping t Saves or adds t Saves or adds t Artist page views
completed plays t Saves or adds { % tracks heard { Streams t Album page views
skips - ‘
quick skips - f Listening time t Streams over half the song t Downstream listening t Downstream listening
total plays { Sessions per week t Downstream listening
click skips -

button skips -
continuations
rec. views -
adds -

saves -

BGMEUTHEE S+#THREC ®‘TERJOZEY EKXID

Figure 1: Heatmap of interaction features and normalized
features for four behavioral clusters. User goals represented
are: 1) listen in the background, 2) listen to new music now
and later, 3) find new music for later, 4) explore new music.

[Gathright2018]p.58, Figure 1: Heatmap of interaction features and normalized features for four behavioral clusters.
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Understanding and Evaluating User Satisfaction with

Music Discovery

S NZEAREDE](2/2)
- 1—H(3F &880/ 77—« A M 1 TCE R DOhnidiEeE

- BIORST 4 JROA—YHRERERITITHNEDD
Bl : Dt—(ZAITSIANDERE), TLAYURXDEN, 7—F7« AN TIVLAR—-0ME &

- I —HREROFHM (C (X2 B DORIDAERDIERNFE T D

Bl : Dt—JHAEICSHTE, EEBC1It—TJ 93 A& 158tt—T 93 A TIEFFHINZEND
- I—YDimEEDHEEICHTFSI DED

-I1—Y OFHERDOHE

-S1—Y OITHEE(ERL)

-HREfID1 > F ST 3 > DOmANE/ &=/ IMEDFIF

[Gathright2018]
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Between Clicks and Satisfaction: Study on Multi-Phase User

Preferences and Satisfaction for Online News Reading

[Session] : Behavior (1) How much do you  (:2E%#%
expect to like the news? )iE7)

[Z%&]: Hongyu Lu, et al. CBEKXZE)

1 (1) Before-Read I (Z}Aftln:[r—l{;ad (2) How mUCh
N P —— em-level Preference "“:S.}'l"."_'ll“:ﬁfi"..'f.l'§.T“u. tem-level Preference do vou like the
[H=R]: Uy o Ecd—YDpreference™ 1 | g fermlevel Pref {ﬁ ) R— N
:‘:—\7 \\J j o e ] o — S ) L
‘ hk.ja—- Clic T R ead) J Feedback B‘:’;‘I‘;:‘: Pl (nE%%u}b/\Jtl_'fé)
[*E%g] emiedd 'm‘:‘h A — Co;s‘iste;a;;/ of
- EBE)\AI)LTCZ=1— Znﬂ%%u}b@ﬁ D1 — _U' ll’! '”.' e~ s
Mpreference(like)DZML, ZLICEERS m ut-le\~el '
Satisfaction
ABDBDZEI1—HRIT 1 ZNEZTHH.
- J1—Y DpreferenceldieExHmOFIE S — ll (3) Post Task
o e e Item-level Preference 3 HOW mUCh
R DEDIEEBE X (HZTENED oot | 1 gy | e o) o
f ) End Browsing Pair-wise satisfaction In random order | “- dO YO;J Ilke the
prererence). ' ' ‘ i Nnews:
) ‘ R (FRALBXOSARD
° O IJ v O btﬁﬂ%@preference7&%7ﬁua_ — ;;‘”i (B) Preference E’&EB;&B?%/%)
" s oy o E Annotation
DET)LZFE.

[Lu2018] p.437, Figurel. User study procedure.

*1: AW Cld preference’ &'like'Z X B L TULVRUN,
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Between Clicks and Satisfaction: Study on Multi-Phase User

Preferences and Satisfaction for Online News Reading

[FENTZHRDH] :

- Vw31 —Y DpreferencedisiEE U TIEART5

(D Uw I UTeEe B D58% (3 5ER MM 3K (dislike))

- preferenceldEeSBZH5ORIE, A IVERDIEEETEAL
- SEEEFATCEE DpreferenceZAL(FEEEDRE

(1255023 >D)XIRICHEZS(TD

B : BiIlCERATZEEEDpreferenceMELNERDEEE%
BE (CE <9 SERN D D

- A XI1EDEDpreferenceDFRIC(FLA T EHAED
BAEEDODEEBRUVERICIKRSD

(Fo) | =5 DI SO TEDITH)
(F) | A—5DA1>25950>3 > DXk

(EQ)[FEEDME (FFIZKIC LD ERHi)

Table 6: Features to predict item-level preference
Behavior features Fj,

Fb: l_ﬁ@j‘a Ij

B1 Viewport time S ORDITE
B2-B3 | Dwell time; Normalized dwell time (in user)

B4-B5 | Read -length; -ratio

B6 Read speed

B7 Max scroll interval

Bs Direction .

Context features F,
C1-C4 | Dwell time; Read-legth /-ratio /-speed of last click
C5-C8 | Average dwell time; Read-legth /-ratio /-speed of

revious clicks
EQ Expert labeled quality

F: 1—Yn1>%
>3 > DK
(interaction context)

EQ: 525D mE

aaty features Iy (BPIRIC LD
mage num S

0Q2-Q3 | Content / title length i )

Q4 Stopword num in title

Q5 Similarity of title and content

[Lu2018] p.442, Table6. Features to predict item-level preference
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- EvaluationhYEpl

- Foundations and Future Directions = Future Directions

rSwvo
Search and Ranking

ﬁll

BA
Research on core IR algorithmic topics, including IR at scale

Future Directions

Research with theoretical or empirical contributions on new technical or social
aspects of IR, especially in more speculative directions or with emerging
technologies,

Domain-Specific Applications

Research focusing on domain-specific IR challenges

Content Recommendation,
Analysis and Classification

Research focusing on recommender systems, rich content representations and
content analysis

Artificial Intelligence,
Semantics, and Dialog

Research bridging Al and IR, especially toward deep semantics and
dialog with intelligent agents

Human Factors and Interfaces

Research into user-centric aspects of IR, including user interfaces,
behavior modeling, privacy, and interactive systems

Evaluation

Research that focuses on the measurement and evaluation of IR
systems




@DERNDIA=Z1="71
DE)) ]

YAHOO!

JAPAN

Copyright (C) 2018 Yahoo Japan Corporation. All Rights Reserved.



@EADIZ1=51 DM

ERADI=Z1="7+1 OFm

2017€12H, ¥J(DACM SIGIRDZ BN RIEDAN hKD
i5HA AR b A
[%F1] Tokyo ACM SIGIR Chapter
(ACM SIGIRBEERIZEB) 2019/1/15 POWIR SIGIR2019(CEIFT=A> S U
2O D0—02 3V I (RERE)
(&) RIEIDSIGIR2017(BAFHE)DRRIIN'EREY 2018/10 w=4— Search Tactics for Real-
" - e — World Tech Problems
IRFAFR(CHIFBEADT L RELE e

[(EBANE]  SIGIREEDANRZ b, =EEITEHRFEES
[ZER] FRFREFEKF)
[FEHR] A=

tW i tte r : ACM SIGIR#I D1 ABE LT, 20174

1272 EI CIEFEGR énib o XER
é%ﬁﬁﬂ%%%b’(b\i?g

SETHR (ER): S



http://sigir.jp/
https://twitter.com/acmsigirtokyo
http://sigir.jp/page/registration/

YAHOO!

JAPAN

Copyright (C) 2018 Yahoo Japan Corporation. All Rights Reserved.



v SIGIR(FIBRIRZEDEF DERIEDE Rz, EHEHRKFACMDDEIRSIGIR.

v SIGIR2018(F7H (R =ZSH 2 RFTHIfE, #9740BS.

v BREK21%. ERI T3St IR E R EH HEE.

v Za1—T)Lxwv MNEER (DJ)LR—/)N—D#146.0%, 70 = H)Ltw >3 > D
73.1%I(C531h)

vV NSwORIISIEETIEO T VIEBHE < MEE(CE| EHhSHEE(CE I DI%iENE L)

v S w ORIEIRECT (IR EF (CHHME UG Ehuman factorsh'% <, 11— KD D
XNV L MERDHELNTULD.

vV FOZHIIV ey a>ES>F 2 0F8, I-—HYDOIT810OnRICET 36D, HERE
MNZ, WEwEPTY T v o - DT TDtvI 3 U IdES.

v SIGIR2019(33kE7H, /\UTHIE

v ACM SIGIRERZ &M 201 76 12H (CHEE



S8EXik(1/4)

[Kamishima2018] Toshihiro Kamishima: ML, DM, and Al Conference Map, http://www.kamishima.net/archive/MLDMAImap.pdf. (2018)

[Microsoft2018] Microsoft Academic: SIGIR Conference Analytics, https://www.microsoft.com/en-us/ research/project/academic/articles/ sigir-
conference-analytics/. (2018)

[SIGIRLOC] SIGIR: List of SIGIR Locations and History, http: //sigir.org/general-information/history/.

[Keyaki2017] #B ZFH: SIGIR2017&E M () HES=2sZMEBE L 21— S ILRXVbhRBHERR-, F11LBFF AN FUFT4ORX -2 >
R = D A, http://www.ieice.org/~nlc/attachment/ NLC20170908-SIGIR-2017-Keyaki.pdf. (2017)

[SIGIRDL] Event: IR, ACM Digital Library, https://dl.acm.org/event.cfm?id=RE160

[SIGIR2018DL] The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, ACM Digital Library,
https://dl.acm.org/citation.cfm?id= 3209978. (2018)

[SIGIR2017DL] Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM Digital
Library, https://dl.acm.org/citation. cfm?id=3077136. (2017)

[SIGIR2016DL] Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, ACM Digital
Library, https://dl.acm.org/citation.cfm? id=2911451. (2016)

[SIGIR20170P] Arjen de Vries, Hang Li, Ryen White: ACM SIGIR 2017 - Opening - PC Chairs, https://www.slideshare.net/arjenpdevries/ acm-
sigir-2017-opening-pc-chairs. (2017)

[Umemoto2017] Kazutoshi Umemoto et al.: Search by Screenshots for Universal Article Clipping in Mobile Apps, ACM Transactions on Information
Systems (TOIS) - Special issue: Search, Mining and their Applications on Mobile Devices, Vol.35, Issue.4, pp.34:1-2. (2017)



SE Xk (2/4)

[SIGIR2018AC] ACM SIGIR 2018 Conference Organization: ACM SIGIR 2018 Accepted Papers, http://sigir.org/ sigir2018/accepted-papers/.
(2018)

[SIGIR2017HP] SIGIR2017, http://sigir.org/sigir2017/. (2017)
[SIGIR2016HP] SIGIR2016, http://sigir.org/sigir2016/. (2016)
[TOIS] SIGIR: TOIS Presentation, http://sigir.org/ conferences/tois-presentation/. (2017)

[Manning2016] Christopher Manning: Natural Language Inference, Reading Comprehension and Deep Learning,
https://nlp.stanford.edu/manning/talks/ SIGIR2016-Deep-Learning-NLI.pdf, p.72. (2016)

[Ghani2018] Rayid Ghani: Data Science for Social Good and Public Policy: Examples, Opportunities, and Challenges, Proceedings of the 41st
International ACM SIGIR Conference on Research & Development in Information Retrieval, p.3. (2018)

[Sakai2015] JBHEW: 1BRI7 O A5 54w, IO %, pp. 32-33 (2015)

[Jarvelin2002] Kalervo Jarvelin and Jaana Kekalainen,Cumulated gain-based evaluation of IR techniques, ACM TOIS, Vol. 20, No.4, pp.422-446,
(2002)

[Jarvelin2018] Kalervo P. Jarvelin: Salton Award Keynote: Information Interaction in Context, Proceedings of the 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval, pp.1-2. (2018)

[Ingwersen2007] Ingwersen, P. & Jarvelin, K. The Turn: Integration of Information Seeking and Retrieval in Context. Heidelberg: Springer. (2005)

[#HEF2008] Peter Ingwersen, Kalervo Jsrvelin®, i N5, FEH F08A, £/l E25R, [BERIRZRDRANMNER D] — [FIRIER S IBHRIRZRDIRS - , (2008)



S8EX#h(3/4)

[Kelly2009] Diane Kelly, Methods for Evaluating Interactive Information Retrieval Systems with Users. (2009)

[Joho2011] R F£XK, MEENIBIRIRZRD WE & 5755, http://taurus.c.u-tokyo.ac.jp/SigIC/ws110701papers/sigic05i2Joho.pdf. (2011)

[TutorialDL] Jun Xu, Xiangnan He, and Hang Li: Deep Learning for Matching in Search an Recommendation, http://comp.nus.edu.sg/~xiangnan/
sigir18-deep.pdf (2018)

[Carmel2018] David Carmel, et al.: Product Question Answering Using Customer Generated Content - Research Challenges, Proceedings of the
41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 1349-1350. (2018)

[Agrawal2018] Manoj Kumar Chinnakotla and Puneet Agrawal: Lessons from Building a Large-scale Commercial IRbased Chatbot for an Emerging
Market, Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 1361-1362.
(2018)

[Geyik2018] Sahin Cem Geyik, et al.: Talent Search and Recommendation Systems at LinkedIn: Practical Challenges and Lessons Learned,
Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 1353- 1354. (2018)

[Skinner2018] Michael Skinner: Product Categorization with LSTMs and Balanced Pooling Views, https://sigir-ecom.github.io/ecom18DCPapers/
ecom18DC_paper_9.pdf.(2018)

[Canamares2018] Rocio Canamares and Pablo Castells: Should I Follow the Crowd?: A Probabilistic Analysis of the Effectiveness of Popularity in
Recommender Systems, Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp.
415-424, (slide) https://www.slideshare.net/pcastells/should-i-follow-the-crowd-a-probabilistic-analysis-of-the-effectiveness-of-popularity-in-
recommender-systems-105288595. (2018)



S8E ik (4/4)

[Gathright2018] Jean Garcia-Gathright, et al.: Understanding and Evaluating User Satisfaction with Music Discovery, Proceedings of the 41st
International ACM SIGIR Conference on Research & Development in Information Retrieval, pp.55-64. (2018)

[Lu2018] Hongyu Lu, Min Zhang, and Shaoping Ma: Between Clicks and Satisfaction: Study on Multi-Phase User Preferences and Satisfaction for
Online News Reading, Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp.435-

444, (2018)

[Suzuki2018] Shogo D. Suzuki, et al., Convolutional Neural Network and Bidirectional LSTM Based Taxonomy Classification Using External Dataset
at SIGIR eCom Data Challenge, https://sigir-ecom.github.io/ecom18DCPapers/ecom18DC_paper_1.pdf (2018)



