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Abstract: This paper compares several strategies for determining probing items. Probing items

are presented to users especially at their sign-up process to get their feedback, from which user

profiles are constructed. Therefore, how to select probing items are important for designing rec-

ommender systems. This paper reports the results of comparing several strategies by simulating

user behaviors using a dataset.

1 はじめに

本稿では，逐次推薦状況において，ユーザの嗜好を
推定するためのプロービングアイテム決定戦略につい
て検討する．情報推薦を利用したサービスでは，アイテ
ムに対するユーザの関心や嗜好に関する情報を収集し，
これに基づいて推薦アイテムを決定する．特に，協調
フィルタリングを用いたサービスでは，ユーザがアイ
テムに対して下した行為（閲覧，購入，評価など）に関
する情報（インタラクションデータ）に基づいて，推
薦アイテムを決定する [12]．研究においては，事前に
収集された大規模インタラクションデータを対象とす
る場合が一般的であるが，実際のサービスを想定する
と，サービスを通じてインタラクションデータを逐次
収集していく必要がある．
インタラクションデータを収集するアプローチの一
つとして，新規ユーザが推薦サービスの利用を始める
際に，いくつかのアイテムを提示し，それらに対する
フィードバックを得ることでユーザプロファイルを構
築する事が考えられ，そのようなプロセスを本稿では
サインアッププロセスと呼ぶ．サインアッププロセス
において提示するアイテムは，得られるユーザプロファ
イルの質に影響を与えることから，提示すべきアイテ
ムの選択は重要と考える．
本稿では，「ユーザのフィードバックを効率よく得ら
れるようなアイテム」をプロービングアイテムと定義
し，行為履歴のない新規ユーザにアイテムを逐次的に
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推薦していく状況を想定して，プロービングアイテム
の決定戦略について検討する．具体的には，ユーザプ
ロファイルを構築するサインアッププロセスと協調フィ
ルタリングを用いる推薦プロセスの 2段階に分け，そ
れぞれアイテムの推薦およびユーザによる評価（フィー
ドバック）を繰り返しながらユーザプロファイルを逐
次更新していく．実験協力者によるユーザ実験ではな
く，データセット（評価値行列）を利用してユーザの
行動を模擬することで逐次推薦状況を再現する．これ
により，ユーザ実験よりも大規模なユーザ実験を低コ
スト・短時間で実施可能である．優れた推薦システム
は，サインアッププロセスにおけるユーザの労力を最
小限に抑えつつ，高い推薦精度を達成できるとの考え
に基づき，複数のプロービングアイテム決定戦略の比
較検討を行う．

2 関連研究

2.1 協調フィルタリング

情報推薦手法は，アイテムの属性を利用する内容ベー
スフィルタリングと，ユーザがアイテムに対して下し
た行為履歴に基づく協調フィルタリングに大別される．
協調フィルタリングでは，行為履歴を評価値行列とし
て表現し，これを入力データとしてアイテムに対する
ユーザの予測評価値を計算する [12]．
協調フィルタリングはメモリベース法とモデルベー
ス法，及びこれらのハイブリッド手法に大別される．メ
モリベース法はユーザやアイテム同士の類似度を評価
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値行列から直接計算し，予測評価値を求める．代表的
な手法に k-NN (k-Nearest Neighbor) [3]があり，ピア
ソン相関係数を用いて推薦対象ユーザと類似するユー
ザ集合を求め，類似ユーザが対象アイテムに対して下
した評価値と，推薦対象ユーザとの類似度に基づいて
予測評価値を求める．
モデルベース法は評価値行列から構築したユーザや
アイテムのモデルを用いて予測評価値を求める．評価
値行列から，潜在因子によるユーザベクトル，アイテ
ムベクトルを求める行列分解ベース [8, 13]や深層学習
ベースの手法 [4, 5]が提案されている．

2.2 コールドスタート

コールドスタートは協調フィルタリングの課題の一
つとして指摘されており，新規ユーザや新規アイテム
が増えた際に，行為履歴が蓄積されるまで精度良い推
薦が行えなかったり，推薦ができない問題を指す．
これまでに，コールドスタート問題の解決策として
様々な手法が提案されており，非個人化推薦と個人化推
薦に大別される．非個人化推薦にはランダムな推薦 [6]，
人気度やエントロピーに基づいた推薦手法 [10, 11]があ
る．個人化推薦では，アンケートに基づく推薦 [1, 18]，
評価値行列の拡張による推薦 [7, 14]やソーシャル情報
を利用する推薦手法 [9, 15]などが挙げられる．

2.3 対話型情報推薦システム

推薦システムの評価は，MAE (Mean Absolute Er-

ror) や RMSE (Root Mean Square Error)など予測評
価値の誤差や，適合率，再現率など推薦リストに基づ
く評価が主流である．これらは，蓄積された行為履歴
に基づいてユーザの嗜好を予測し，一度だけ推薦の提
示を行う状況を想定した評価と言える．
一方，情報推薦システムを運用している状況を想定
すると，行為履歴はアイテムの推薦を通じて逐次的に
得られるため，ユーザに対しどのようなアイテムを提
示するかは，その後の推薦アルゴリズムの挙動に影響
を与えることになる．この様な，ユーザとの対話から
得られる情報の活用に焦点を当てた，対話型情報推薦
システム（conversational recommender systems）に関
する研究が行われている．
対話型情報推薦システムにおいて，逐次的に得られ
るユーザフィードバックを手掛かりに適切な推薦アイ
テムを決定するプロセスを探索と利用のトレードオフ
（exploration-exploitation tradeoff）としてとらえ，多
腕バンディット問題（multi-armed bandit problem）の
枠組みを適用する研究も多い．Zhaoらは PMF[13]を
拡張したインタラクティブな協調フィルタリング手法

を提案している [19]．Thompson Sampling を利用し
てユーザに推薦するアイテムを決定し，フィードバッ
ク（評価）に基づきユーザプロファイルを逐次更新す
る．Christakopoulouらは Thompson Samplingの他，
UCB (Upper Confidence Bond)や　Greedy　など複
数のアイテム提示戦略について比較している [2]．
ユーザとのインタラクション設計に着目した研究と
して，Sunらは，自然言語による対話を通じた推薦シス
テムを提案している [16]．アイテムが満たす条件・特徴
を取得する事を目的としたモデリングのための対話と，
推薦のための対話の両方を考慮しており，どちらの対話
を行うかを決定する対話戦略を学習している．Wegba

らは，ユーザが満足するまで推薦を繰り返す事を想定
した対話型映画推薦システムを提案している [17]．ユー
ザが満足するまで繰り返す反復的プロセスはユーザに
よる映画データベースの探索とみなせるため，映画を
キャラクタと見立てたストーリーテリングによってよ
り良い探索体験を提供することで，推薦結果に対する
満足度向上を目指している．

3 逐次推薦状況の構築

逐次推薦状況を想定して情報推薦システムを評価す
る場合，実験協力者を募って行うユーザ実験と，デー
タセット（評価値行列）に基づくオフライン実験の 2

つのアプローチが考えられる．前者は，実際のユーザ
の反応・フィードバックを取得できる利点があるが，大
規模な実験を実施したり，多数のシステムやアルゴリ
ズムを比較することが困難である．一方，オフライン
実験は評価値行列に含まれない状況，例えば未評価ア
イテムに対する評価などが不明であるなどの欠点があ
るが，多数ユーザによる評価や，多数システム・アル
ゴリズムを同一条件で比較することが可能という利点
がある．従って，ユーザ実験を行う前に，検証すべき
仮説や評価対象とするシステム・アルゴリズムを絞り
込む用途などに，オフライン実験は有効と考える．
以上の考えに基づき，本稿ではデータセットを利用
したオフライン実験を採用する．本節では，利用する
データセット，逐次推薦の手順，ユーザフィードバック
を取得するためのプロービングアイテム決定戦略につ
いて説明する．

3.1 データセット

対象データセットとして Grouplensが提供している
MovieLens 100K Dataset1を使用する．このデータセッ
トにはユーザ 943人が映画 1,682件に対し，評価 1～5

の 5段階で下した 100,000件の評価を含んでいる．

1https://grouplens.org/datasets/movielens/
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逐次推薦を行う対象ユーザは，その行動を模擬する
必要がある事から，評価件数が少ないユーザは対象と
して不適である．本稿では，評価件数が 200以上のユー
ザを推薦対象ユーザとする．データセット内の全ユー
ザのうち，本条件を満たすユーザは 149人存在した．他
のユーザも，推薦対象としては利用しないが近傍ユー
ザなどとしては利用する．

3.2 逐次推薦手順

推薦対象ユーザは，当該推薦システムを初めて利用
する新規ユーザである事を想定する．新規ユーザは推
薦アイテムを決定するために必要な行為履歴を持たな
いため，本稿では以下の 2段階に分けて推薦を行う．

• サインアッププロセス：ユーザプロファイル構築
を目的とした推薦を行う

• 推薦プロセス：ユーザが好むアイテムを推薦する
ことを目的とした推薦を行う

サインアッププロセスは，推薦プロセスにおいて有
効なユーザプロファイルを構築するためのフィードバッ
クを得ることが目的であり，このプロセスで提示する
アイテムを本稿ではプロービングアイテムと呼ぶ．推
薦プロセスでは，一般的なユーザベース協調フィルタ
リング（KNNWithMeans2）を利用する．
各推薦対象ユーザ utに対して，以下の手順で推薦を
逐次実行する．ここで，Vtは utが実際に評価したアイ
テム，Rt ⊂ R（Rは評価値行列）は ut の実際の評価
履歴とする．

1. 初期設定：元のデータセットから Rt を除去し，
V ′
t = {}, R′

t = {}とする．

2. サインアッププロセス：以下の推薦を 10回繰り
返す．

(a) V ′
t に含まれないアイテムを後述する決定戦
略によってソートし，リストとして utに提
示する．

(b) ut はリストの上位から評価したことのある
アイテムを探して行き，最初に発見したア
イテムを vi(∈ Vt)とする．

(c) vi に対する ut のフィードバック（評価値）
rti(∈ Rt)を取得し，V ′

t , R
′
tに vi, rtiをそれ

ぞれ追加する．

3. 推薦プロセス：以下の推薦を 10回繰り返す．

2http://surpriselib.com/

(a) KNNWithMeansを用いて，R′
tに基づきvi(∈

Vt−V ′
t )の予測評価値 r̂tiを求め，最大値を

とるアイテム vm を ut に提示する．

(b) vmに対する utのフィードバック rtm(∈ Rt)

を取得し，V ′
t , R

′
tに vm, rtmをそれぞれ追加

する．

サインアッププロセスにおいて，Vtに含まれるアイ
テムを utが過去に評価したことのあるアイテムとして
扱う．提示されたアイテムに対するユーザのフィード
バックを取得する必要があるため，推薦プロセスにお
いても Vt から推薦アイテムを選択する．

3.3 プロービングアイテム決定戦略

サインアッププロセスにおけるプロービングアイテ
ム決定戦略として，本稿では以下の 11種類を採用し，
比較する．

1. Random: ランダムにアイテムをソート

2. Popularity: 人気度（評価件数）fiが高いアイテ
ムを優先

3. Variance[6]: 評価値の分散が大きいアイテムを
優先

4. Mean: 平均評価値が高いアイテムを優先

5. Pure entropy[6]: エントロピーが大きいアイテム
を優先

H(vi) = −
∑
j

pij log(pij) (1)

pij はアイテム viに対する全評価のうち評価値が
j である割合を示す．

6. Entropy0[11]: 評価値行列の欠損値を 0で置換し
てから各アイテムのエントロピーを計算し，大き
いアイテムを優先

7. Ent*Pop[10]: H(vi)（Pure entropy）と fi の積
が大きいアイテムを優先

8. Ent*(log Pop)[10]: H(vi)（Pure entropy）と log fi
の積が大きいアイテムを優先

9. HELF[11]: エントロピーと評価件数の調和平均
が大きいアイテムを優先

LF (vi) =
log fi
log |R|

(2)

H ′(vi) =
H(vi)

log 5
(3)

HELF (vi) =
2LF (vi)H

′(vi)

LF (vi) +H ′(vi)
(4)
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|R|は全評価件数であり，式 (3)は評価値（5段
階）の異なり数でH(vi)を補正している．

10. Item-based (Popularity): 初回は人気度が高いア
イテムを優先，2回目からアイテム近傍ベース協
調フィルタリングを用いて予測評価値が高いアイ
テムを優先

11. Item-based (Random): 初回はランダムにアイテ
ムをソート，2回目からアイテム近傍ベース協調
フィルタリングを用いて予測評価値が高いアイテ
ムを優先

4 評価実験

4.1 評価指標

本稿では，サインアッププロセスにおけるユーザの
労力，推薦プロセスにおける推薦性能の二つの観点か
らプロービングアイテム決定戦略を評価する．前述の
通り，サインアッププロセスでは各プロービングアイテ
ム決定戦略に従いアイテムをソートして推薦対象ユー
ザに提示し，ユーザはリストの上位から自身が視聴し
たことのある映画を探し，見つけたらそれに対する評
価をシステムに伝えるプロセスを繰り返す．このとき，
視聴したことのアイテムを見つけるまでに要する時間
がユーザの労力とみなせる．そこで本実験では，提示
されたアイテムのリストにおける，実際に評価したこ
とのあるアイテムの最高順位に基づいてユーザの労力
を評価する．この順位が高いほど，サインアッププロ
セスにおけるユーザの労力は少ないことになる．
推薦プロセスにおける推薦性能の評価には RMSEと

MAEを用いる．RMSEとMAEは評価値の予測にお
ける精度評価の指標であり，それぞれ以下の式で定義
される．

RMSE =

√
1

|R|
∑
ri∈R

(r̂i − ri)2 (5)

MAE =
1

|R|
∑
ri∈R

|r̂i − ri| (6)

ここで，ri，r̂i はそれぞれ，実際の評価値と予測評
価値を表す．トップ k推薦を想定して適合率，再現率
で評価することも考えられるが，本稿では推薦性能の
時間的変化を確認する意図もあり，予測誤差による評
価を採用した．
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図 1: 各決定戦略による RMSEの結果
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図 2: 各決定戦略によるMAEの結果

4.2 実験結果

評価件数が 200以上のユーザ 149人に対して，それ
ぞれ 3.2節に示した手順で全 20回（サインアッププロ
セス，推薦プロセス各 10回）の推薦を行った．推薦回
ごとの全ユーザの平均RMSE, MAEを求めた結果を図
1, 2にそれぞれ示す．また，サインアッププロセスに
おけるユーザの労力に関する指標として，視聴したこ
とのある映画の最高順位の全ユーザ平均を求めた結果
を図 3に示す．
図に示した結果に基づき，サインアッププロセスに
おけるユーザの労力，推薦プロセス開始時および終了
時の推薦性能に関して各プロービングアイテム決定戦
略を比較した結果を表 1に示す．
サインアッププロセスでは，人気度を考慮した戦略
でユーザ労力が低い傾向にある．人気アイテムはユー
ザが知っている可能性が高いため，サインアッププロ
セスにおけるユーザ労力の削減に貢献したと考える．
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図 3: サインアッププロセスにおけるユーザの労力

表 1: 各決定戦略の比較
決定戦略 ユーザ労力 推薦性能 推薦性能

（開始時）（終了時）
Random △ ○ ○
Popularity ○ ○ △
Variance × × ○
Mean △ △ △

Pure entropy △ × ○
Entropy0 ○ ○ △
Ent*Pop ○ △ ○

Ent*(log Pop) ○ △ ○
HELF ○ △ △

Item-based × △ ×
(Popularity)

Item-based × × ×
(Random)

Entropy0では未評価が多いアイテムのエントロピーが
低下する効果があり，人気度の考慮と同様の効果があっ
たと考える．一方，Varianceや Pure entropyなど，評
価のばらつきのみを考慮した戦略ではユーザ労力が高
い傾向があり，人気度との組み合わせなどが必要と考
える．
推薦プロセス開始時の推薦性能は，Random，Popu-

larity，Entropy0で良好な結果が得られている．Ran-

domでは様々なアイテムを提示することがユーザプロ
ファイルの質向上につながり，推薦プロセス開始時に
高い推薦性能が得られていると考える．しかし，サイン
アッププロセスでユーザが知っているアイテムを上位
で提示できない場合があるため，ユーザの労力は Pop-

ularityよりも劣る結果となったと考える．
推薦プロセス終了時の推薦性能は，Random，Vari-

ance，Pure entropy，Ent*Pop，Ent*(log Pop)で他よ
りも良好な結果が得られている．Varianceと Pure en-

tropyは，多様なアイテムについてのフィードバックを

得ていたことが最終的な性能向上につながったと考え
る．反対に，Popularityの推薦性能は推薦プロセスを
通じてあまり変化しておらず，サインアッププロセスで
多様なアイテムについてのフィードバックが得られな
かったことが影響した可能性があると考える．エント
ロピーと人気度の両方を考慮した戦略であるEnt*Pop，
Ent*(log Pop)は，ユーザ労力と推薦プロセス全体を通
じた性能の両面で良い結果が得られていると言える．
Item-based (Random, Popularity) はどの評価指標
においても他の戦略より劣る結果となった．このこと
は，新規ユーザに対する推薦が困難という協調フィル
タリングの欠点が反映されたものといえ，システム利
用開始時の早い段階でユーザに提示するプロービング
アイテムの選択が重要であることを示唆していると考
える．

5 おわりに

本稿では，逐次推薦状況においてユーザプロファイ
ルを構築するために提示するプロービングアイテムの
決定戦略について，データセットを用いた比較実験を
行った．ランダムな選択や人気度を考慮した選択など，
11種類の決定戦略について実験を行った結果，人気度
を考慮した戦略はユーザ労力が抑えられること，エン
トロピーと人気度の両方を利用した戦略はユーザ労力
と推薦性能のバランスが良い結果が得られることを確
認した．
本稿の課題として，データセットを利用した実験で
あるため，ユーザが評価したことのあるアイテムにつ
いてしかフィードバックが得られないことが挙げられ
る．また，ユーザが過去に評価したアイテムは，ユー
ザの嗜好や知識に影響を与え，結果としてそれ以降の
アイテム評価に影響することが考えられるが，今回の
実験では考慮することができていない．これらの課題
に関しては，実験協力者を募ってのユーザ実験の実施
などが必要と考えるが，コストのかかるユーザ実験前
に，検証すべき戦略の絞り込みをするためには，本稿
で採用したアプローチは有効と考える．

謝辞

本研究の一部は JSPS科研費 19K22896, 21H03553

の助成を受けたものです。

参考文献

[1] M. Aharon, O. Anava, N. Avigdor-Elgrabli, D.

Drachsler-Cohen, S. Golan, O. Somekh. Ex-

人工知能学会 インタラクティブ 
情報アクセスと可視化マイニング研究会(第27回) 

SIG-AM-27-03

17ー　　　　ー



cuseme: Asking users to help in item cold-start

recommendations, 9th ACM Conference on Rec-

ommender Systems, pp. 83–90, 2015.

[2] K. Christakopoulou, F. Radlinski, K. Hofmann.

Towards Conversational Recommender Systems,

KDD’16, pp. 815–824, 2016.

[3] T. Cover, P. Hart. Nearest Neighbor Pattern

Classification, IEEE Transaction on Information

Theory, Vol. IT-13, pp. 21–27, 1967.

[4] T. Ebesu, B. Shen, Y. Fang. Collaborative Mem-

ory Network for Recommendation Systems, SI-

GIR’18, pp. 515–524, 2018.

[5] X. He, L. Liao, H. Zhang, L. Nie, X. Hu,

T.-S. Chua. Neural Collaborative Filtering,

WWW2017, pp. 173–182, 2017.

[6] A. Kohrs, B. Merialdo. Improving Collaborative

Filtering for New Users by Smart Object Se-

lection, International Conference on Media Fea-

tures, 2001.

[7] X. Lam, T. Vu, T. Le, A. Duong. Address-

ing Cold-Start Problem in Recommendation Sys-

tems, 2nd International Conference on Ubiqui-

tous Information Management and Communica-

tion, pp. 208–211, 2008.

[8] D.D. Lee, H.S. Seung. Algorithms for Nonnega-

tive Matrix Factorization, NIPS’00, pp. 556–562,

2000.

[9] C. Li, F. Wang, Y. Yang, Z. Li, X. Zhang. Ex-

ploring Social Networking Information for Solv-

ing Cold Start in Product Recommendation, In-

ternational Conference on Web Information Sys-

tems Engineering, pp. 276–283, 2015.

[10] A. Rashid, I. Albert, D. Cosley, S. Lam, S. Mc-

nee, J. Konstan, J. Riedl. Getting to Know You:

Learning New User Preferences in Recommender

Systems, 7th International Conference on Intel-

ligent User Interfaces, pp. 127–134, 2002.

[11] A. Rashid, G. Karypis, J. Riedl. Learning Pref-

erences of New Users in Recommender Sys-

tems: An Information Theoretic Approach,

ACM SIGKDD Explorations Newsletter, Vol. 10,

Issue 2, pp. 90–100, 2008.

[12] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom,

J. Riedl. GroupLens: An Open Architecture

for Collaborative Filtering of Netnews, ACM

Conference on Computer Supported Cooperative

Work, pp. 175–186, 1994.

[13] R. Salakhutdinov, A. Mnih. Probabilistic Matrix

Factorization, NIPS’07, pp. 1257–1264, 2007.

[14] M. Saveski, A. Mantrach. Item Cold-start Rec-

ommendations: Learning Local Collective Em-

beddings, 8th ACMConference on Recommender

Systems, pp. 89–96, 2014.

[15] S. Sedhain, S. Sanner, D. Braziunas, L. Xie,

J. Christensen. Social Collaborative Filtering for

Cold-Start Recommendations, 8th ACM Con-

ference on Recommender Systems, pp. 345–348,

2014.

[16] Y. Sun, Y. Zhang. Conversational Recommender

System, SIGIR’18, pp. 234–244, 2018.

[17] K. Wegba, A. Lu, Y. Li, W. Wang, Interactive

Storytelling for Movie Recommendation through

Latent Semantic Analysis, IUI2018, pp. 521–533,

2018.

[18] M. Zhang, J. Tang, X. Zhang, X. Xue. Ad-

dressing Cold Start in Recommender Systems:

A Semi-Supervised Co-Training Algorithm, 37th

International ACM Conference on Research; De-

velopment in Information Retrieval, pp. 73–82,

2014.

[19] X. Zhao, W. Zhang, J. Wang. Interactive Collab-

orative Filtering, CIKM’13, pp. 1411–1420, 2013.

人工知能学会 インタラクティブ 
情報アクセスと可視化マイニング研究会(第27回) 

SIG-AM-27-03

18ー　　　　ー


	sigam27.pdf
	sigam2703.pdf




