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Abstract: This paper reports a prior investigation towards an interactive sightseeing route recommendation
method. While most of the traditional recommendation systems just present a few solutions to its user, this
study assumes that users establish their own route from the distribution of degree of recommendation. The
degree is formulated as a probability distribution. A fast iterative sampling method called Exchange Monte
Carlo is employed. The degree of recommendation is assumed to be updated based on the feedback from
users. Through results by simulation, practical use cases are discussed.

1 はじめに

本稿ではインタラクティブ経路推薦手法について検
討する．観光経路推薦では多くの不確実性を扱わなけ
ればならない．不確実性の原因として，天候の変化，人
の行動に起因する外乱，センサの精度不足などがある．
この前提の推薦であっても利用者との対話を通して推
薦内容を改善していくことが可能であり，その枠組み
は Human in the loopと呼ばれ，研究が進められている
[1]．観光経路推薦では前述の通り状況が刻一刻と変化
していく．くわえて，変化に対応して利用者が待てる
時間内で再度推薦を行わなければならない．この問題
に関して様々な観点から研究が行われている [6, 7, 3]．
観光経路推薦では Traveling Salesman Problem (TSP)
の拡張である Selective TSP (STSP) [8]が問題の定式化
としてよく用いられる．TSPは最適化問題に含まれる．
最適化問題を定式化として利用した推薦手法では，最
適解の近似解のいくらかを候補として推薦が広く行わ
れる [6, 7]．しかしながらこの方法は，利用者に経路
を追従する負担を強いることになり，運送計画の決定
には適するが，被災地からの避難中や，休暇中の移動
など状況の変化が多い用途には適していないと考える．
よって本研究では利用者に経路の大まかな方向を与え，
利用者自身で実際の経路を決定可能な推薦の提示方法
を考える．
本稿では，離散的な経路を提示するのではなく，経
路の分布を提示することで，利用者が分布から経路を
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描くことができるのではないかと考える．これに対し，
不確実性を扱う観光経路推薦の研究の中でも確率分布
により経路生成を定式化し，Simulated Annealing (SA)
[5] を用いて推薦経路を生成する研究が行われている
[3]．しかしながら，[3]は分布の生成のための標本抽出
法について論じておらず，確率モデルに適した問題の
定式化と，SAによる最適化法の提案にとどまる．

SAは温度 0の極限分布から最適解を抽出するため
に，モデルの温度と呼ばれる制御変数を複数用いる．
同様に多数の温度を用いて確率分布を近似する手法に，
Exchange Monte Carlo (EMC) [9] と呼ばれる手法があ
る．SAが極限分布のみを近似するのに対し，EMCは
任意の温度の分布を近似することが可能であるため，確
率分布を近似する場合は EMCを用いた方が良い．ま
た，EMCは最適化性能においても優れていることが報
告されている．
本稿では，[3]の問題定式化に基づき，EMCを利用
して確率分布の近似を行う手法を提案し，数値実験結
果を，実際の利用場面と照らし合わせて考察する．評
価実験では人工データセットを用い，EMCが SAに比
べ優れていることを示す．確率分布を提示することに
より，利用者が自ら道順を選択することが可能な推薦
手法は著者らの確認する限り見当たらない．また，同
時に，インタラクティブに利用者の状態を反映させる
ことが経路最適化手法を目指した研究も見当たらない．
以上の課題に本研究は貢献する．
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1.1 記法

nを自然数としたとき，[n] = {1, 2, ..., n}であるとする．
ある集合 Aと添字の集合 Nがあるとき，ANは集合であ
るとし，その要素 a ∈ AN は ∀i ∈ N [ai ∈ A]を満たす系
列であるとする．例えば，x ∈ R[n] は x = (x1, x2, ..., xn)
で書かれる実数列を意味する．#Aは集合 Aの要素数を
示す．{1, 2, ...}のように {·}を用いて定義されたものは
集合であり，(1, 2, ...)のように (·)を用い定義されたも
のは族であるとする1．

2 関連研究

2.1 Traveling Salesman Problem

観光経路推薦の問題定式化に TSPがよく使われる．
N を接点の集合，E ⊂ N × N を辺の集合としてグラフ
(N, E)を考える．このとき，TSPは各 n ∈ N を訪れる
べき場所，各 e = (n1, n2) ∈ E は n1, n2 を結ぶ抽象的な
経路であると定義する．普通は n1, n2 を実在の経路で
結ぶ最短経路がこれに選ばれる．eには重み we ≥ 0が
割り当てられる．重みはすべての辺に定義される，つ
まり (N, E)は完全グラフであるとされる．xが有効な
経路であることを

P(x)⇔
[
x ∈ N[#N+1],∀i, j ∈ [#N]

[
xi , x j

]
, x1 = x#N+1

]
と定義する．この制約 Pを用いて，TSPは以下の x∗を
求める問題と定義される．

ϕ(x∗) = min
P(x)
ϕ(x), ϕ(x) =

#N∑
i=1

wxi,xi+1 (1)

上記中の ϕは目的関数と呼ばれる．
観光経路の選定では，訪れるべき場所が定まってい
るよりも，利用可能な時間が定まっている場合の方が
多いと言える．利用時間を制約として，より良い経路
を選ぶ問題の定式化に Selective TSP (STSP) [8]がある．
STSPは与えられた制限コスト内で訪れた地点にある価
値の総和を最大化する問題として経路最適化問題を定
式化する．

STSP，TSPどちらにおいても，考慮するグラフは実
際の交通機関を抽象化したもので，グラフは完全であ
るとしており，実際の道路の接続関係とは異なる．問
題は抽象化され，完全グラフであるため解法を考えや
すいという利点がこの定式化にはあるが，観光経路推
薦に用いる場合，接点として設定した地点間の経路の
情報，つまり移動途中の景観などの情報が失われてい
る，という欠点がある．

1添字が自然数で与えられる場合，族は組や数列という概念に等
しい．

2.2 観光経路推薦

観光経路推薦手法は，ユーザ毎の価値観に応じユー
ザ毎に異なる推薦を行うことができ，またその逆に同
じユーザに推薦される経路は，同じ性質を持つもので
あることが求められる．このために，前節で説明した
STSPの価値は，通常ユーザの価値観をモデル化して決
定される．つまり，推薦には価値観モデル化と，モデル
からの解の推定をそれぞれ行うための 2つの手法が必
要となる．この 2つをつなぐのが問題の定式化である．
推薦する経路を求める問題を定式化するが，不確実
性に対処するかを考える必要がある．経路推薦におけ
る不確実性について論じた文献に [6]がある．前述した
価値観モデル自体に不確実性が含まれることから，推
薦問題の定式化も不確実性を扱えることが望ましい．不
確実性を矛盾なくあつかう枠組みとして，Fuzzy集合
論を [6]では用いている．確率モデルによる定式化を用
いた研究には Edge Vector (EV) [3]がある．本研究では
主に EVを扱うため，こちらについて詳しく紹介する．
前節で述べたとおり，観光経路推薦では STSPが問
題の定式化としてよく使われる．STSPは完全グラフを
対象とする．これに対し EVでは実際の道路地図を用
いる．また，STSPが接点に観光地点の価値を割り当て
るのに対し，EV ではすべての道に価値があると仮定
する．また，価値，移動負荷は両方とも辺上に定義さ
れるとしてしている．図 1にこれらグラフの比較を示
す．図中左側が従来より STSPで使われているグラフ
である．背面に灰色で元となった道路地図を意図した
グラフを示し，興味ある地点を５つ仮定し，それぞれ
興味の度合いを大きさで表現するとした丸で表してい
る．大きな途中の細かい道はすべて抽象化された経路
に置き換えられている．これにより問題の規模はもの
と道路地図よりずっと小さくなることがわかる．右側
は EVで仮定されるグラフである．すべての道を興味
ある地点と仮定して最適化を行う．問題の規模は，左
側のモデル化より大きいため，高速な解法が経路生成
において必要となる．これに対し，SAと仮想辺と呼ば
れる概念の利用が EVで提案されている．

EV の問題定式化をここで説明する．道路地図のグ
ラフを (N, E)とする．e ∈ E に対し w0

e ≥ 0を道に定義
された重み，b0

e ≥ [0, 1)を道に定義された価値とする．
n, n′ ∈ N に対し，重み wを次の通り定義する．

(n, n′) ∈ E ⇒
[
wn,n′ = w0

n,n′ , bn,n′ = b0
n,n′

]
,

(n, n′) < E ⇒ [
wn,n′ = s(n, n′), be = −Bs(n, n′)

]
.

ただし sは以下で定義される．これは実最短経路を与
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図 1: Conceptual emages of the formulations used in Se-
lective Traveling Salesman Problem (left) and proposed
method (right).

図 2: Comparison of 2 function shapes used in [3].

えるものである．

s(n, n′) = min
x,m

m−1∑
i=1

wxi,xi+1 , x ∈ N[m],

x1 = n, xm = n′,∀i ∈ [m − 1](xi, xi + 1) ∈ E

Bは罰則係数であり，EVでは B > 0の値とされる．こ
れは超パラメータである．辺 e < Eを仮想辺と呼ぶ．対
応する be は罰則負荷である．以上の重みの元，EVの
目的関数は次で定義される．

ϕ(x,m) = Fr

m−1∑
i=1

wxi,xi+1 −C

 − m−1∑
i=1

bxi,xi+1 (2)

関数 Fr : R→ Rは制約関数で，STSPに対応させる場合
は，Fr(x) = lima→∞ exp (ax)と定義する．他に，Fr(x) =
Fev(x)の定義も EVでは用いられる．図 2にこれら関
数の形状を示す．Fevの定義の詳細は [3]に記載されて
いる．経路の制約は次で定義される．

P(x,m)⇔ x ∈ N[m] ∧ ∀i, j ∈ [m]
[
xi , x j

]
時間制約に関しては Frで表現されるため，上記には明
示されない．
仮想辺 e < Eが経路 xに含まれているとき，we の定
義より，xに罰則が追加される．この仮想辺 eを s(e)と
等しい Eからなる経路に置き換えた場合の経路を x′と
すると，ϕ(x) > ϕ(x′)となるように，Bを定める必要が
ある．通常 B > 1でこれが満たされる．これにより，仮

想辺を含む状態は取りづらくなり，最終的に最適解か
らこれは取り除かれる．しかしながら，完全グラフで
ない本定式化では，途中仮想辺を経由しなければ遷移
が行えない場合があり，遷移しづらいことが問題とな
る．これは後述するmeta-Heuristicsにより解決される．

2.3 Meta-Heuristics

組み合わせ最適化問題の近似解法には，Simulated an-
nealing (SA) [5]や遺伝的アルゴリズム [11]，Exchange
Monte Carlo (EMC)[9],蟻コロニー最適化 [4]と言った
meta-Heuristics (MHs)が一般に用いられる．MHsは局
所最適化法と組み合わせて利用する．いずれも，局所
最適化を目的関数を低下させる方向にのみ用いる貪欲
法に対し，目的関数の増加を確率的に一時的に認める
ことで，過適合を防ぐ手法である．TSP系の問題に対
する局所最適化法としては，k-opt法 [10]が広く用いら
れる．ここではMHsのうち，SAと EMCについて説
明する．

SA, EMCどちらもMarkov連鎖Monte Carlo(MCMC)
法に基づく手法である．標本を抽出したい対象の確率
変数を x，その分布を p (x)と表す．MCMCでは確率
変数の系列 x1, x2, ...を用いて xを近似することを考え
る．このとき，十分大きな i について，⟨xi⟩ = x とな
るよな系列を定める遷移確率 p (xi+1|xi)が存在する [2]．
実際に Xを xの取りうる状態の空間としたとき，任意
の x, x′ ∈ Xについて，以下の定式化を考えることがで
きる．

p
(
xi+1 = x′|xi = x

)
=

A
(
x′, x

)
q
(
xi+1 = x′|xi = x

)
+C(x)δ(x, x′) (3)

ここで，(i = j⇒ δ(i, j) = 1)∧(i , j⇒ δ(i, j) = 0)はKro-
neckerのデルタであり，Aは次で定義される．

A(x′, x) = min
(
1,

p (x = x′)
p (x = x)

)
また，Cは次で定義される．

C(x) = 1 −
∑
x′∈X

A(x′, x)q
(
xi+1 = x′|xi = x

)
さらに qは次の対称性を満たすとする．

q
(
xi+1 = x′|xi = x

)
= q

(
xi+1 = x|xi = x′

)
以上の式 (3)の系により系列を計算する方法は，Metropo-
lis 法と呼ばれ，MCMC法を実現するために考案され
た最初のものである．
目的関数 ϕ : X → Rが与えられたとき，xの確率分

布を次の Boltzmann分布で定める．　

p (x = x|T ) ∼ exp
(
− 1

T
ϕ(x)

)
(4)
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この分布を SAと EMCでは対象とする．上記分布は T
が小さくなるほどϕ(x)の値が小さな xが生成されやすく
なる分布である．SAではこの性質を利用し，T → 0の分
布から最適解を抽出することを考える．この極限分布は
計算ができないため，実際には　MCMCで p (x = x|T )
を近似しながら，T を低下させ，極限分布を近似する．
温度の低下のさせ方としては，系列の添字 iに対し，ある
定数を T0, c用いて T ∼ T0 exp (−ci)とする方法がある．
他にも提案されているが，Ti > Ti+1 であり，Ti ≤ Ti+1

となる温度列を定義することの有用性を主張している
文献は著者らの確認する限り見当たらない．条件が変
わった場合に再度最高温度から冷却の過程を実行し直
す過程が必要となる．これは，計算済みの近似解を有
効利用できないことを意味し，状況の微小な変化への
追従性が悪いと言える．つまり，インタラクティブな
用途で用いる際の欠点となる．

EMCは複数の温度を (Tl|l ∈ L)として用意する．Lは
適当な添字の集合である．対応する複数の分布 p(xl|Tl), l ∈
Lを用意する．x = (xl|l ∈ L)と置いて，これら #Lの確
率変数をまとめて一つの Markov系列で近似すること
ができる．各 l ∈ Lに対する分布の違いは温度だけに限
る必要はないが，本稿では温度のみを対象とする．こ
のような異なる超パラメータを持つ確率モデルのこと
を複製（Replica）と呼ぶ．EMCでは，複製を含めた全
体のモデルに対するパラメータは不変であり，SAと異
なる．この性質により，一度得られた解を引き続き改
善することが可能であり，さらにそれぞれの複製は独
立して計算することが可能なため，並列性に優れる．

SA，EMCともに qは，用いる局所最適化法と同等
な変化を与えるように定式化を行う．

3 提案手法

本稿では，EVの定式化を元に，EMCにより経路の
確率分布を近似する．完全グラフへ変換してから通常
の STSPにより最適化を実行すれば，EVの定式化は必
要ない．しかしながら，その場合道の価値と負荷を変
更するたびに完全グラフへの変換を実行しなければな
らない．利用者の行動履歴から得られる情報は，本来
の道路地図に対応したものであるから，変換をせずに
扱えたほうが応用性は高いと考える．また，インタラ
クティブ性の観点から，追加の計算負荷は避けるべき
である．従い，提案手法では完全グラフへの変換をせ
ずとも同等の計算が行える仮想辺による EVの定式化
を採用する．
目的関数に式 (2)を使う．問題のグラフは EVと同様
に仮想辺を用いて実際の道路地図をそのまま用いるも
のとする．局所最適化方には 2変数を対象とした k-Opt
法を用いる．確率分布には式 (4)を用いる．EMCが用

いる複製間で異なる式 (4)の T について以降考える．
温度の組を T = (T1,T2, ..., TN) とする．複製の分布

を p
(
xl
)
, l ∈ L とする．ただし，添字集合 L は L =

{l|l = 1, ...,N}と定義する．このとき，すべての複製を
まとめた確率変数を単に xと表すこととし，その分布
を次で定義する．

p (x = x|T ) =
∏
l∈L

p
(
xl = xl|Tl

)
, (5)

この分布を近似するために，Markov 連鎖 x1, x2, ... を
考える．遷移確率分布に式 (3)を用いる．qを以降定義
する．
ある添字の組 j, k ∈ Lの対を無作為に選び以下の入れ
替えを行うように q (xi+1 = x′|xi = x)を定めるとする．

x′ = (x1, ..., xk, ..., x j, ..., x#L), x = (x1, ..., x j, ..., xk, ..., x#L)

上述した無作為な添字対の選択と入れ替えを実現する
qは次の通り定義される．これは Gibbs法に等しい．

q
(
xi+1 = x′|xi = x

)
=∑

j,k∈L
δ
(
x′ j, xk

)
δ
(
x′k, x j

)∏
l, j,k

δ
(
x′l, xl

)
p(j = j,k = k).

分布 p(k, j)は添字の選択を行う確率分布である．一様
分布とすることもできるが，計算負荷の観点から，近
傍の j, kのみ生成される分布とする．式 (3)の Aについ
て，式 (5)を代入することで以下を得る．

p (x = x′|T )
p (x = x|T )

=
p
(
xk = x j|Tk

)
p
(
x j = xk |T j

)
p (xk = xk |Tk) p

(
x j = x j|T j

) .
目的関数に関して書けば，次のとおりである．丸め誤
差の影響を避けるため，実際の計算には以下を用いる．

p (x = x′|T )
p (x = x|T )

= exp
(
− 1

Tk

(
ϕ(x j) − ϕ(xk)

)
− 1

T j

(
ϕ(xk) − ϕ(x j)

))
. (6)

計算の手続きは次のとおりである．

1. 系列の初期値 x0 を設定後，以下を反復

2. 局所最適化と同等な qにより各系列 l ∈ Lを独立
に更新（通常のMCMC）

3. 式 (6)の系により系列間の状態を交換（EMCの
主な特色）

4. 目的とするモデル l0 の系列の現在の状態を標本
として抽出
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図 3: Synthesized map for experiments. Black and gray
denote be = 1, be = −1 respectively.

4 評価実験

4.1 設定

格子状グラフを用いた評価実験を示す．座標点の集
合を，I = [n] × [m]，接点の集合を N として，全単射
h : I → N により，辺の集合 Eを次で定義する．

E =
{
(hi, j, hi+1, j)|i ∈ [n − 1] ∧ j ∈ [m]

}
∪{

(hi, j, hi, j+1)|i ∈ [n] ∧ j ∈ [m − 1]
}

負荷は∀e ∈ E [we = 1]とする．be (e ∈ E)は be ∈ {−1, 1}
の 2値のみを取るとし，そのうち 8割は −1となるよう
に無作為に決定する．以上の定義により生成したグラ
フに bの値により色をつけた可視化を図 3に示す．黒
は be = −1，灰色は be = 1を示す．市街地では格子状
に道が配置されていることが多いため，このグラフを
用いた実験は現実的であると考えている．
実験では定常状態に達する過程を観察する．実験の説
明において tは計算の進捗度を表すものとし，t = 0, t = 1
でそれぞれ計算開始，計算終了を意味する．∆tを繰り
返しの単位とする．実験では ∆t = 2−17 とする．∆t計
算が進むごとに，それぞれの系列が 26 回，式 (3)によ
り更新され，その後，モデルのパラメタの変更が EMC,
SAそれぞれの場合で行われる．
温度は以下により設定する．

T (τ) = exp (ln TL + (ln TH − ln TL) v) (7)

EMCに対して，この式を用いて，∀l ∈ L,Tl = T (τ), τ =
(n − 1) / (N − 1)として (Tl; l ∈ L)を定める．N = 64,つ
まり #L = 64の複製が用意される．分布を近似する標
本は l0 = 64のモデルから抽出した標本のみを用いる．
状態の交換は l′ = l + 1, l, l′ ∈ Lとなる組 (l, l′)の間で行
われる．

SAは SAa, a = 1, 2, 4, 8, 16で 5つの条件について評
価を行う．この aについて，温度は式 (7)により，T (at)
により定められる．つまり，aの値が大きければ，急速
に温度が低下することになる．
以上の設定で EMC, SAaのいずれからも 8つの標本
を抽出して統計量を算出し，結果を考察する．疑似乱
数の計算にはMersenne Twister2，実数の近似には倍精
度浮動小数点数を用いる．

4.2 実験結果と考察

目的関数の推移を評価する．ここでは最適化性能の
みを計測する．よって，目的関数の値は小さいほうが
良い．実験結果を図 4に示す．EMCの場合が最も低い
目的関数の値（Energy）を示している．また，いずれの
aについても，EMCは SAaより低い目的関数の値を出
している．また，SAaは aが大きくなるほど，つまり温
度を急激に低下させるほど精度が悪くなっているとわ
かる．これに比べ，EMCは急速に最適化が進行した後，
その後も時間をかけるほど解が改善していることがわ
かる．全方法の繰り返し数は等しく，EMCは並列化に
より複製を並列計算できることから，その計算時間は
SAと概ね等しい．それにも関わらず．EMCは SAの
どの場合よりも早い段階で良い解を得られており，推
薦時間にどのような期限が設定された場合でも一般的
に計算を開始することが可能であると言える．一方の
SAでは長い計算時間で精度を確保するか，低い精度で
も短時間で結果を出すかを計算開始時に決定しなけれ
ばならないが，これは一般に困難である．このことか
ら，EMCの利用がインタラクティブな推薦に適してい
る考える．実際の利用場面としては，例えば，不測の
事態で経路を再計算しなければならないとき，ユーザ
がそれを緊急の事情により待てない場合が考えられる．
このとき，未知の計算時間で妥当な解の生成を開始で
き，加えて時間が確保できた場合は引き続き解の改善
を EMCは行える．ただし，このためには問題のグラ
フを再構成しない EVによる定式化が合わせて必要で
ある．
確率分布による可視化について，本稿で検討してい
るものを図 5に示す．(a)は EMC, (b) SA1により生成
されたものである．正方形を縦横 256分割した少領域
に重なる経路の頻度を可視化している．(a)の方を見れ
ば，複数の経路が重なる色が濃い部分は選択の余地が
なくそこを通るべきであるとわかり，濃い経路の途中
にある分岐についてはどれを選んでも問題がないこと
が見てわかりやすい．一方で (b)の結果では経路にま
とまりがなく，道筋を見極めることが難しい．(a)がこ
のような可視化を可能な理由は，用いた EMCが確率

2http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/emt.
html
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図 4: History of objective function for each method.

分布に従い経路を生成しているため，推薦度が正しく
モデル化できているからであると言える．

5 まとめ

本稿では，インタラクティブ観光経路推薦手法の構
築のための，経路分布推定手法を提案し，実験結果を
考察した．提案手法は Exchange Monte Carlo法を利用
し，広く用いられる Simulated Annealingよりもインタ
ラクティブ性において優れた性質を持つことを実験に
より示した．また，推薦度の可視化により，ユーザが
経路を自ら設計する場面を検討し，提案手法の想定さ
れる場面における応用性を述べた．
今後，インタラクティブ性の評価指標と対応する実
験，実データを用意した評価実験を検討する必要があ
る．また，並列性能の改善，温度の決定法を検討する．
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