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Abstract: EEXEDIRLNDFIICH I ATV RHEARICBWT, BFEYE 7LV OHAIIER
TH 2D, HHERDDDEY 2 — V2T 256, ZHEEIMEHICR > TL FOVEAMEMK
W, RIEIC & DR AR T A FRIGBAESEWD DD, cyclic connection ZHF/z R WET LD
AHEHSINTWS. 207k, 77 Y FHEEZROETVCBWTE, BHEOFSENPEHRL T
RMEIATLES. ZITARMYTIE, 77y FMEZROETIBY 2 REOETEEH
FICHRET 2. 2 LT, 77 U FEREROET ML, WaKIC X 2L R TFIEEEA L TILR
L7z, Layer-wise Relevance Propagation for Branch Networks (LRP-BN) Z#28%5 5. #E LD~
7 v 72T 2ETMINT 2 REBRHZERT 2 XX 2712/ %ZH T, LRP-BNIZLD
HERAE S CamE RS2 AR T 5. FROMRE, REFRIIHARNHALER X X 712817
B REHER) 72 B R BT H % Insertion-Deletion Score IZBWTR—R T 4 Y FiEx LAY, #EU)RE

REEEHD LRI T 5 Z e RSNz

1 FC®IC

FEZE DRI I Tw A HRICBWw
T, HEYEETVOHAMIIEZETH % [Shrikumar
17,Ribeiro 16]. fllZ1X, HEmHIAREHLZ BAHSE DT
HNCEREEE 2 HWi=5E, HREHRIC X 2 BER
oot z@E LT, HEROWHEEL52% 2 MR T
X 3. ¥/, HHLREBEYEET BV TE, HKTMR
WEHHT 2 Z e HhARETH D, o BED L IC
PELTOWENEI DR RT3 Ze#H L. 20
%a, 7 LoN— YRR [Plungst 07) D X512, E
FOUDRARER R T2 <, EERZRFBICEED W
THEZTY, FULHREDIK %2 b 72 & 3 rlgEtEd »
5. 20, EEFEHETLVOHAEZR LXE S
LA RTHS.

AFSLTIE, BT ADDEERRZ )5 2803
2RO RAIEBAE R & 2 7 2% 5. Kz, B

*EAESTE | BIERAREI TSR TR
T 223-8522 I IRMIETTEILX HE 3-14-1
E-mail: tiida@keio.jp

L2 Zy 7GR T 2 ET ISR L THEREHI
EHERT 2 XA IHEREZDHTS. ZOREHEHI,
B DI Ty 7T BRI EEZLILHTE
5. ZOWHE, BT AYT—2a DI RT D ground
truth ¥ LTHX 60T, 77y 7 HEDINILT ) T—
TarvDAREAWTYRIZEZERT 2720, KRXZA71X
image-level weakly supervised semantic segmentation
RAZEHIRTIEDNTES.
BHERRER X Z 2138 E T UICTBNWT, AEMNC
BRI AR IERECRI 3 2 D D 2 W X R 7T
H5. KB, NEDERLIZER DY Sy 7D~ R
&, BEHERNREIAAENRFIETH 5 GradCAM [Selvaraju
17] AR LT 3000 & 0 ToU 13 0.16 F2EE L 258 C %
TWhW, £/, KX 27 IR EEBEET %
Zendnnd 2, BEFILORREEIC X o THEY)
IRAHAE R FRE R 5. D), KREXRAZIZIERE<
27 ZMAETITEA R  EYREBICTER 5 246
BodHsb, HLWEX R TH5. X112 Road Damage
Detection Dataset [Arya 22] DE{&HIZRT. £3, &
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1: RETFEOHIKIX

RZZZBVWTIIEN 1 O Input I2/RT & 5 728 IE
BEETNMCANLTY 7y 7 OERENETS. Z
DIBET, X1+ D Attention map D X 5 /2B LD
27 Z v 7 HBUCIEE U7 HIWrARIL O 457 A5 IA 2 25 i
THZENEF L.

BAAA=2—=F V2 bV — 0 2B T5ET
NEZBWT, HEMNBIHOERICE S 2 IR <
REINTWS [Selvaraju 17, Petsiuk 18,Zhang 21a].
ZhooFHER, BEEDFETEIC K DEHHZER T
3. 2O XS BFRIEFNVOMEIHKEL RV, 8
HMele e 7OUREEICRHE L 2@ DA L <, il
UIECEE T 256035 5. £/, #ER DD
DHEAEY 2 —V%2 770 Fr L THARARLFL
LT, Attention Branch Network (ABN) [Fukui 19] %
Lambda Attention Branch Networks [lida 22] 7% £'23
AT 5. UL, sifAEREHDEY 2 — VKR 7
T 9 IRy 7R -o>TLEY, BEREDEWV. Layer-
wise Relevance Propagation (LRP) [Bach 15] %,
026 OHEEZ A L CHIIZ AR T 2 FETH 5.
BB TOMEIBE DR TEIER SN T VWS 72D, R
MmN, KR, LSTM < Transformer 1233 % W1z
FBOAFEDIREINT VS [Arras 17,Ali 22a). L
ML, ZH5DFER cyclic connection & #7272 0
TIADATHEHEINTWS 20, 75 > FHEES skip
connection 72 £ @ cyclic connection ZHDE T /LAD
BRI, 7RGt T EOERPBETDH 5.

COEIBHERDPS, AWRTE, 77 FMiEE
FrOE T M BV TEERNLHIIERTIETH 5 ABN
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12, FBREROEECFH EEENHAETH D, mniE
Btk 2 H S5 LRP Z2EALTHLR S 5. 24T LD,
HERHE RO CE S E RS2 AR S 5. BLEDE
e DEWZ, skip connection X 77 ¥ FHEEE RO
ETICBT S LRP ORIEHEEZHZICIRREL, &
HIFHIANXHEMZERT 2 2 e CHHOME Z M L
X4 % Choice 1 Component (C1C) ZEA LR TH
5. 77 v FHEES skip connection {ZXTIG L 725 1HE T
HFIZE D, cyclic connection IZBWT, HEEOHFS
EXEHE L TRMEINTLES 22X, MY
BZERT 2N TES. £, ROGEHEIEHV
HFE 2 S OHEEE, TR Y O EY) R mH e E L
TWRWI ENZW, 2D, C1CIZ X b IEER 2
HMEFRS CE TERZBRET LI N TES.
AFFEOMA I TO@ED TH 5.
o 7T VI HEER skip connection ZHFOE T
B 5 LRP Ot BT EEZRRET 5.
o R L -FHBEZITIC, RbIEHTNEMHEHE
BEINT 2 Z e THADOMEZM EXE 5 C1C %
HBAT 3.

2 FBEMRR

RIE5 8 7V OEERBAA U B3 2 iR
{ATHOANTW S [Bach 15, Selvaraju 17, Fukui 19, Ali
22a). SEATHRSL [Das 20,Zhang 21b,Joshi 21, Ding 22]
&, SEABAERZ S OREYE T 7 OIHA K
WRAL T, cHERNCEHE LSO S 8 IC&FiE
DR - R Z To T 5. ENEIHER X 2 7128
U AEHER R T — &t v b LTI, ImageNet [Deng
09], CIFAR10, CIFAR100 %5 DEHER) A2 {5 %H 7 —
Xty FBEHINATVS.

PRI RO TR, & DARFTEIZ X - T Back
Propagation (BP), Perturbation (PER) ¥ # ODAftiiz
DT A NTES. BP IHEHBROAEICEH
L CHHEAER T 5. BP OFikr LT, LRP [Bach
15,Binder 16], Grad-CAM [Selvaraju 17], Integrated
Gradients [Sundararajan 17|, [Chefer 21] %23 5.
[Sundararajan 17] 1&, E L FHEAZLED 2 DORNHZE
fiti7z3 k212, AEZED L T2 AER T 2FETH
5. [Ismail 21] 1%, EHETRWHEBHOHELZ X 7 IZhD
% Z 2T/ A4 X% 5T Saliency Guided Training
ZHEZR LTz, [Bach 15] 1%, /1200 O EREZFIH L
THAZANT 2 FiETH 2 LRP DR L 2 251577
HEEEHRL. £/, LSTM = Transformer (2313 %
WEBDFIRTEDIREBEINT VS [Arras 17,Ali 22a).

PERIIAINABE ZMA T, ETLDHIIDZE( A S
AR AT 2 FiEEE . PERICHEIN STk L
T, LIME [Ribeiro 16], Shapely Sampling [Lundberg
17], RISE [Petsiuk 18] %53% 5. 21X, [Petsiuk 18]
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2: HRAIIALER X 2 27 D)

&, ¥ R7 ENG e W ORIRY o F R AT
5FETH 5.

F7z, ARPEILNA»SHAZERT 2FiEE L
T ABN [Fukui 19], IA-CNN [Zhang 21c], [A-RED?
[Pan 21) %3 5. ABN L, 77 ¥ FHEr LTt
EREHDOEY 2 — V2 EA U CHAZERT 24855k
HAEWFIETH D, Mask A3C [Itaya 21], PonNet
[Magassouba 21], LABN [lida 22] ZZJEH S ATV 5.

B —~A S [Cao 20, Ali 22b] W EE % HW
TER ED 7 Z v IR AR 71281 2 &FHE, HiE
T—Xty b, EHEFHERE 2 SRS LTV .
i LD 7 Z v 7B, Faster-RCNN [Ren 15] %
SSD [Liu 16] D% < OWABHE T AHICH ST
7z [Yang 20, Yan 21]. [Yang 20] 1%, SSD \Z#DH—
INY A R EFFOBAIAAE % &1 Receptive Field %
BAL, #EEOZ Sy ZBINIGHALTWA. [Yan
21] & Deformable Convolution [Dai 17] Z FHWT 2 7 v
71210 o 7R H 21T 5 Deformable SSD 2424 L
TWa. B EDY 7y 7R Z 712810 2 1R
7 —%&+t v k& L Tid RDD2022 Dataset [Arya 22]
% Crack500 dataset [Yang 19] 23D F 545,

REFEITHAERNEHDOEY 2 —VBEKNR T T v 7
Ry 27 ZATH2% ABN LiF®izb, 75 v FHEe o
ETMIBERAMEDOE W LRP #EAT 5. £7, cyclic
connection IZXTJ5 L TWiWwW LRP 2 I1d#E7 D, skip
connection ¥ 77 ¥ FHERFFOETMIE T S LRP
DFHETELZHTITIRET 5.

3 MIERE

KL TIE, B LD 7y Z7HEESFEZ R 7150t
52 MR ORI R 2 5. K2 1ER E
D77y 7 HESEMEOR R RS, ERPANTD
D, GHIFETVOTEHBEEZ AJEBICES L 7
BTHs. KRZI7TIX, EFALOFTENER L 72HE
FUCHH LHENFHHAPEE L.

KRELTE, HED»HER 075y 7 2BIBTE
52 hHiiRe 5. EHNLER ED Y Ty 7B
FHEE [Arya 22 HITF SN TS, KFRITBIT 3
FEZL RO LS ICERT %:

o UZwUMEE: HiRICBIIZER LDy S v Ik

TNYREIR
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AREZ7DAS e MEZEnZ2hE G x ¢ Rexhxw
LxBYDT T AET B OMEEROTHIEp(g) € R
Th?. TIT, Co,hwldFhzhr s 28, AN
E{RICBT 5 F ¥ L8, fithE, MilErRs. i,
BRI L CHESRPOSEBICEEEZE D 4T
7= attention map o € R ZF|fH 5 3.

4 REEFE
REFIRIZ T 7 > F G2 > ABN [Fukui 19] 12
LRP [Bach 15] Z& A L THA#k L 7z LRP for Branch
Networks (LRP-BN) TH 5. AFIZBWTIE, ABN
ZRELDHET BT 7Y FMERFOE T MTHE AT RE
7% LRP 2 5. AFETITOIIREZ, 77 v Fhdx
FOETMIBT S LRP OetEHEZER L DT
HB. TD®, 77 2FHEER cyclic connection %
HOFE—MICHEHAIRETH 5. REFEOHHME
Ro#@EhTH5.
o 7T U FHEER skip connection ZFOE TN
B 5 LRP OftEHEEZRET 5.
o R L-FHMBEE R TIC, kD IEHTREHEHE
ERT 2 e THAOME R LEE 5 C1C %
HATS.

4.1 ETIIEE
M 3 IHERFIEDE T MEIES K ANICH T % Rel-
evance R DRI EITIEOBIE 2 /RS, $2REFIEX, Fea-
ture Extractor (FE), Attention Branch (AB), Per-
ception Branch (PB) ® 3 €Y 22— LI 5.
FE &, 7V OFEHBEHOAERS X UCFHICHW 2
RS 2 3 2720DFY 12—V T, BAAAE, Batch
Normalization &, Max Pooling J& ¥ B f#l® Bottle-
neck B OMMEND. frg DA T, BFRFH
B hcRoXmxw 2N 25. 2 ZT, ¢, hy, w &%
NENHGRHED T v > 28, fithE, MiIELzRS.
AB BB R 70 £ v, B 45w B
S B7H0 O icsring. f) 1 Bottleneck f,
B AiAAJE, Batch Normalization 8, Max Pooling J&
hoMRENSG. ) OANERTHY, Hdac
Rt TH 5, Fio, FHICEIETRWEEE HIER
LTPBICANT R0, adDIdhH, Nf—xRF
RA=R 0o ED/NXHEZE 0L LTa € RXh 2y
5. f/(f]% DANNZ R THDY, HIZ attention loss &
FHHET 27D 0RO TR p(gan) THB. [l 13
Bottleneck &, EA1AAE, Batch Normalization J&,
Max Pooling &, Global Average Pooling J&2> &K
SN s, HRBIRUZ p(yas) ZMA 2 Z T, AB %27
FICEEBEEMN I TER IR TES. 204
B, DEER L EE T % attention map ZAERTE 3.
PBiZh & a Dl ZHAVWTHEEITIEY 2 —b
T®%. PBld Ng— BE® Bottleneck f& & 4G &

oommoo



ooboooo oooooooo
00000000 oo0o0ooooOooo(@s3an)
SIG-AM-31-02

.

Attention Branch

Feature Extractor frE
- g
o =
SS{s [ hOa-
(0]
«Q Q
~|xB

1
| powbis |

I yoauamog |

Perception Branch

fPB

€ RG5r)

p(¥pB)

XNg — B

3. ERFEDOETNMEEB XU AITIZBIT % Relevance R DEFEHTEDHEREX

LR ENSE. ZZT, NgldnNvIZR—V %y bU—
27 @ Bottleneck @O %K T. PBOANE o’ ©Oh T
5. wRAINE Lo’ £ h BT EDESZZ I
b, PHNCEELREREANT LI TES. %
72, PBOHHIZE DT 5 RIZET 3 H DR D THIfE
p(ype) TH 5.
BEMBRETLOTFINEZUTORTREINS:

p(gpB) = fee(a’ © h) (1)
p(9as) = FiR(R) (2)

D, PHOTHUHREH T 20T 2. £,
p(yap) EFICITEZH W WY, HEEBEBISEAT
522 CattHOMEZM LB 2N TES.

4.2 LRP Ot&AHZ*

BHEOME, 77 F s, skip connection D 3 D
DOREEIZTITT, IREFRICBIT % LRP OFtB k%
WS 5.

4.2.1 BEOWEICHITS LRP OHEARE

HEHEORIEICEWTIE, A7 LRP D z-rule [Bach
15,Binder 16] Z#MH L Cat5HE 2. —Hle LT, R(z)
% z D Relevance ¥ 3% ¥, Linear JEIZH1} 5 LRP O
FHEIEDIR TR N 5!

(D)
R () -3 ReLU (w;;{")
5 > ReLU (wka](-l))
Z ZT, zi(I), zi(o) XN F Linear DO AT, HIIC
B2 i HHOEFE%, w;; 1& Linear BOEAIZHBIT
% (i,)) BFEZ2RT. LorL, LROFHHEGER cyclic
connection Z & EHRWET /LI L TIREXNTED,

7'F ¥ FHEIE skip connection 72 ¥ D cyclic connec-
tion 2 HDETI/ITIIMIGE L TWRWV. ZDk®D, K
WL TIX 7 > F Ml - skip connection (231F % LRP
DEtETERRET 5.

4.2.2 TSUFHEEICHITE LRP OHESZE

KETIVIBITE 77V FREETIE, p(Yas) & p(Ups)
FNENDP S 2 DD Relevance Ragp, Rps DalBE X
5. ZOk®, MEOMEL IR HGETHET S
WEDH 5.

%9, Rap DIBTEEZEZS. K3IWTRTXII,
Rpp DASNCHAVS o/ 1 f) ZELCHEENS. 2
D7z, Rap DatBAHEE LT, Rpp ZFHT 251
¢, Rpp CWIMSLICEHET 2 HEIEZONS.
T, h ® Relenvance R(h) Z5HE 3T 2, Rap & Ren
oM EHMAT 5L, HiFETIE Rag 2/ LT Rpg D
FEN_HIIKMEINL AR H S, 200, K3
R - HBORAITRT X518, Rep & I3MHNLICHEAZ
15, ZORMEREICBWT, 77 v FiEE o 2H
Wi — MEEE ART e TE, LSTMIZBIT %
LRP [Arras 17 IZBWT, 7 — MEEZMIICEHE S
LB —HT 5.

X2, R(h) OFEFEITHIZBAL T, conservation [Bach
15] &)@ L T Rap, Rep DHI%Z R(h) £ 55%. ABD
AN R T, PBOANDP O 0Oh THB72H, 1:a
DEAZMIMbEZ NS, LIrL, o OFEF
forward FHEFRHIBICE TN T WS 728 [Arras 17], H
BLTHEEZEBLLZWZDIZ Ras £ Rps D& E
FL7 DEXD, Rh)EUTOXTERENS:

R(h) =Ras + Rps

> >
— -

(4)

4.2.3 Skip connection IcE|F3 LRP OFHEAZE
Residual connection [He 15] (&4 4 7 g 2 5D
A3, z-rule I X DEIE T % & skip connection DFZED
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FE SNV, £z, residual block & skip connection
OFMEHNE T 2RT, WINFR L7 X~ — L
ZFIHT 2 ABN D77 FHEE L I3RS, 207k
¥, skip connection & & L7z LRP 21287 5.
%7, residual connection ® A 1% Zh FN x,
, Yy, £ L, residual block 2 z-rule %@ /8 L Tt
L 7z Relevance, 177D Relevance £ N2 R(x)~
, R(ys) £RT. R(h) D & [FIFKIC, conservation %
ERT 5L xs D Relevance R(xs) & R(x)™ & R(ys)
DIMEMTRT B TEZEZIONS:
R(ms) = ’YR(:ES)_ + (1 - V)R(ys) (5>
ZIT, vIZR(xs)” & R(ys) DHETH 2. v 3w,
Ly, BEBLTHRETZ 2B TE D, HERD
MERBARERMEONI 2D, y=05 2 L7

4.3 Relevance & attention map %Z L)
AR ESE

RBEFEICBOTE, R o 2HAGDYE, CIC
REAT S CRMBERBHEERT 2. AFILT
A LTHEAT 2 a OFHEFIEEZLIITHERNS.

R(h) 75 FE O AJIZHF % Relevance Z G55
% Z 2T a3 2 Relevance R 23F 601 %. BEHFED
LRP r[Afkic, 2O R ZFHHL LTHEHAT2 D
ARETH 5. Tz, BEFED ABN L FIFRIC o DAL
LCHATE3. UL, H—OBHERTEEFH
U786, TR sEEciEE L2 ER S0 3
Zehdbh, TOBRIBEOE DS N. —F, KF
ETIE, LRP & ABN X535 < 3 H L7287 &
DB L, EMERHHEELZDICIRE A DT X
< —UEEBHIHCHHET 2. T, HREEOREY)
ADEHZEH 2, CICIZE D RDIEH TSR
ZHE LT acic 218%. C1CIZBWTIX, Roa' %
28 x 28 12N L Tl W 2 4 XA E 2 B Z HIFR L
7o BT, EHENESVEZR Y SO RSN T 5.
REZLDEHETZ 7y Z7IRBTFHLTED, RdIE
HENEVWHEREZ S LHEBIIE 872 2 OAmEY) 2 fHiR
CHEHAE L TWARWZ EAZ W, 20, JEEEEE
WERS Ce THREBRET 223 TE 5. BRI,
acic Fwx hIZHERLTa %2185,

T/, BREBE LT, UFEHEHAT 2

L = CE(yps, y) + ACE(9aB, y) (6)

ZZT, y, CEANFENETNIERE T XL, RAETY b
0¥ —iRi R, EABEBOEAZRT.

5 B
51 F—&twv bk rERRETE

ARSI BRI X 2 2 073 D7 —
Kty B A ORISR D FHE LR, EIIBIAR
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£ 1. EFBRTHWEHRE

IRy 2”7 300
Ny FH A4 X 64

Feature Extractor
, 1.0 X 1074
HEK Linear

Attention Branch 1.0 X 1073
et AdamW

RAZZBWTE, B LI A Y T—>ayRRD
ANDIGHDATRET, 7B T THZ e EEL
W, ZDRD, ¥RV T—2arDIATEEET,
ARNZ & 2= R 7 ERDIATRET 7 — 2 B3 1453 7% Road
Damage Detection 2022 Dataset (RDD2022 Dataset)
PEBBELTWS., koT, RDD2022 Dataset Dl
£EDS, HGER - B Iay 7 - 7R MNEEE
D =B DALFEIC X - T RDC Dataset ZHEEEL 7=,

RDC Dataset 121, EKE{RE X, #EgE LD7 Ty
JEEIMIE XN T NAREETNTWVWS. RDD2022
Dataset I2l%, HER -4 Y FFxza- /L vx—- T A
V- FEOAEG 6 A EOEREREIEENRS. D
5%, FEDAND 5 HENZEAD» S, FEIF Fr—
NL I OIREINIEBETH S, ZDdH, RDC
Dataset IZBWTIXEIA DR 2HEZFRW 5 HE%Z
FRH L72. RDD2022 Dataset 121%, #&# 5753 Labellmg
& Computer Vision Annotation Tool IZ& D 7/ 7 —
PariiTokl 7y JHBIERSEENTVS [Arya
20,Arya 22]. TO7 /) F—>avF—RICEaEND Y
Z v ZHEBICHDSDZHEBGEYIDHL, 79y IEHI S
ADOEBREER L. £, 75 v 7#7 5 DR
X2 7y ZHEBERROIEEN S 7 X LI L
TR L. 2O, 75y 72 5 208)b L%
DOt - BlEZEhENT /) T =Y a vy T =X bitHE
L7227 v Z7HBONE - BRI HFIR L 72, ik
2, i - R - ZE(L R 1T o 22 BRSO XOR
ZEtHE T 5 2 e CHOME G2 L, BUET{RD 0
HGREEZEIRL TT A MEEERER L. Zhb ol
P2 X b RDC Dataset ZHEEE L 7=.

RDC Dataset ldHA A Y F+Fxza- /v x—-
7 RXVAD 5 HETHE I NIEREGRE &0, 7Ty
BT 7 ADERIZ 4TSI, 7Ty 7S T XD
B3 30,430 W TH o 7=, FIFES, WilES, 7R
BT ENEN 66,641, 7,405, 3,807 ¥ > FLE G
AWM TIE, % 224 X 224 12V 4 X LT, KHE -
[z - YR =T X 27— XYLk Z21To 7. AlfES
FETNADHEE, RIEESIEINS =T X =K%
BT 27=DIFHH L. 72, 7R MEGIEETL
DYEREFAMIC A U 7.

1 RRBFEECBI IRELZTT. BEFIEO
7 X — 2B e AR 2 heh 3200 1, 92.1G T
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£ 2. BEFHEEBI 2 ERNFER

Method Acc 1 Insertion 1 Deletion | ID Score 1

RISE [Petsiuk 18] 0.958 £0.004 0.373 £0.042 0.054 £ 0.027 0.319+0.018
GradCAM [Selvaraju 17]  0.958 +0.004 0.635 + 0.026 0.052 £0.011 0.583 £ 0.020

LRP [Bach 15] 0.958 +£0.004 0.528 £0.117 0.301 =0.111  0.227 £0.010

ABN [Fukui 19] 0.957 £0.004 0.358 £0.035 0.090 £0.013 0.268 £ 0.039

Ours 0.957 +0.004 0.804 £0.005 0.069 +0.006 0.735 + 0.007

Hotz. FIRIZIZAEY 11GB 58 GeForce RTX 2080
Ti, Intel Corei9 9900K 3 & O 64GB ® RAM % Hi
WTC, E7TLVOFIBRHB IR 1IN ot
miEE, Then 3RMEBLL 1.3 x 103 M TH-
7o, MGEERAE B 2 LB OMEDS 4 [FlERHGE L
BP0 IGECRMK T ZTo7z. 2Ot %, WAt
BB 2EAEROEIRDENE 2D TR MEA
BT IFEEY, RENREEL L.

5.2 REER

N—2Z 74 yFEE LT, RISE [Petsiuk 18], Grad-
CAM [Selvaraju 17], LRP [Bach 15], ABN [Fukui 19]
ZMHHLZ. ABN Z2R—2X 54 yFike L#EEIZ,
Ny ZR=yFvy b7 =28 LT ResNet ZHWTEB
D, 79 FHEEEZHT 2 RLEENRFEDLDT
»%. [C, RISE - GradCAM - LRP 1272
TIOVEHFTRER FIEDOH TIEMERNTH 5 72 DR — X
74 vFHEe L.

AREERIZBUF 5 5l EI12lE, Accuracy, Insertion
Score, Deletion Score, Insertion-Deletion Score (ID
Score) ZHWz. %72, ®RHIEFHERZL ID Score & F 2T
fliREY L7z, Accuracy W3R A7 IZBIT 5 ET IV
DIEEHER 25 R EETH D, Insertion score, Deletion
score, ID score (IR & R 7 O REUER 72 AR
TH2DHEAL .

Insertion Score, Deletion Score & Insertion HifR,
Deletion HifRD AUC TEHE SN 3. %7z, ID Score
iZ Insertion Score ¥ Deletion Score DZTEFHRI4L5.
Z Z°C, Insertion BifRE, Deletion HifRiZZh 2 o %
FCHEERMEEE A, HIFRLZZBoTHloZ bz Rk
T AR TERT 5.

ijﬁ, (84 @g%%ﬂ%ﬂlﬁbl ah,jl,aimw e ,aiw,ih’ Z
LT, G A, in, d, ZRDEXIITERT 5.
Ap = {(ir, jr)|k < n} (7)
. (1'1,0),(1,])614"
(in,dn) = { ! . (8)
(Oaxij)r (17.]) ¢ An

T, nidEACHRT A e BERT. i,,d, B
ET MRS LIBED 1% Zhzd ylinsn), g (deln)
Y35, DL E, (n,yéms’”)), (n,yédel’n)> 270y

b U7z#b##A3, Insertion #i#R, Deletion HIf#fTH 5. Z
T, Clie BT 7 R%HRT.

R2WINR—R T A YRR REF R OIS
ERNFERE RS, SFECOZFEB®ZE 5 BTV, Z
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