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Abstract: 深層学習が幅広い分野に応用されている現代において，深層学習モデルの説明性は重要
であるが，説明生成のためのモジュールを利用する場合，それ自体が複雑になってしまい透明性が低
い．逆伝播により説明を生成する手法は透明性が高いものの，cyclic connectionを持たないモデルの
みに適用されている．そのため，ブランチ構造を持つモデルにおいては，複数層の寄与度が重複して
反映されてしまう．そこで本論文では，ブランチ構造を持つモデルにおける逆伝播の計算方法を新
たに提案する．そして，ブランチ構造を持つモデルに，逆伝播による説明生成手法を導入して拡張
した，Layer-wise Relevance Propagation for Branch Networks (LRP-BN)を提案する．道路上のク
ラック有無を分類するモデルに対する視覚的説明を生成するタスクに焦点をあて，LRP-BNにより
理論的背景が明確で高品質な説明を生成する．実験の結果，提案手法は視覚的説明生成タスクにおけ
る標準的な評価尺度である Insertion-Deletion Scoreにおいてベースライン手法を上回り，適切な視
覚的説明の生成に成功することが示された．

1 はじめに
深層学習が幅広い分野に応用されている現代におい
て，深層学習モデルの説明性は重要である [Shrikumar

17,Ribeiro 16]．例えば，理論が未解明な自然現象の予
測に深層学習を用いた場合，視覚的説明による重要な
部分の可視化を通して，理論の洞察を与えることがで
きる．また，複雑な深層学習モデルにおいては，判断根
拠を説明することが困難であり，誤った根拠をもとに
分類しているかどうかを見分けることが難しい．この
場合，クレバーハンス効果 [Pfungst 07]のように，モ
デルが本質的な特徴ではなく，無関係な特徴に基づい
て分類を行い，汎化性能の低下をもたらす可能性があ
る．そのため，深層学習モデルの説明性を向上させる
ことは有益である．
本論文では，モデルが分類結果を出力する過程に対す
る判断根拠の視覚的説明生成タスクを扱う．特に，道路
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上のクラック有無を分類するモデルに対して視覚的説明
を生成するタスクに焦点をあてる．この視覚的説明は，
道路上のクラックに対するマスクと考えることもでき
る．この場合，セグメンテーションのマスクが ground

truthとして与えられず，クラック有無のラベルアノテー
ションのみを用いてマスクを生成するため，本タスクは
image-level weakly supervised semantic segmentation

タスクとみなすことができる．
視覚的説明生成タスクは各モデルにおいて，本質的に
重要な領域を正確に抽出する必要がある困難なタスクで
ある．実際，人間が作成した道路上のクラックのマスク
と，標準的な説明生成手法であるGradCAM [Selvaraju

17]が生成した説明との IoUは 0.16程度しか達成でき
ていない．また，本タスクには明確な正解が存在する
ことが少ないうえ，モデルの特徴や構造によって適切
な説明生成手法は異なる．そのため，本タスクは正解マ
スクを利用せずに過不足なく適切な領域に注目する必
要のある，難しいタスクである．図 1にRoad Damage

Detection Dataset [Arya 22]の画像例を示す．まず，本
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図 1: 提案手法の概略図
タスクにおいては図 1中の Inputに示すような道路画
像をモデルに入力してクラックの有無を分類する．そ
の過程で，図 1中の Attention mapのような道路上の
クラック領域に注目した判断根拠の視覚的説明を生成
することが望ましい．
畳み込みニューラルネットワークを基盤とするモデ
ルにおいて，視覚的説明の生成に関する研究は数多く
提案されている [Selvaraju 17,Petsiuk 18,Zhang 21a]．
これらの手法は，既定の計算方法により説明を生成す
る．このような手法はモデルの構造に依存しないが，複
雑なモデル構造に特化した説明の生成が難しく，不適
切な領域に注目する場合がある．また，説明生成のため
の専用モジュールをブランチとして組み込んだ手法と
して，Attention Branch Network (ABN) [Fukui 19]や
Lambda Attention Branch Networks [Iida 22]などが
存在する．しかし，説明生成専用のモジュール自体がブ
ラックボックスになってしまい，透明性が低い．Layer-

wise Relevance Propagation (LRP) [Bach 15] は，出
力からの逆伝播を利用して説明を生成する手法である．
各層での逆伝播の計算方法が定義されているため，拡張
性が高い．実際，LSTMや Transformerに対する逆伝
播の計算方法も提案されている [Arras 17,Ali 22a]．し
かし，これらの方法は cyclic connectionを持たないモ
デルのみに適用されているため，ブランチ構造や skip

connectionなどの cyclic connectionを持つモデルへの
適用は，新たな計算方法の定義が必要である．
このような背景から，本研究では，ブランチ構造を
持つモデルにおいて標準的な説明生成手法であるABN

に，説明生成の理論や計算過程が明瞭であり，高い透
明性を有する LRPを導入して拡張する．これにより，
理論的背景が明確で高品質な説明を生成する．既存研
究との違いは，skip connectionやブランチ構造を持つ
モデルにおける LRP の計算方法を新たに提案し，最
も注目すべき領域を選択することで説明の品質を向上
させる Choice 1 Component (C1C)を導入した点であ
る．ブランチ構造や skip connectionに対応した計算方
法により，cyclic connectionにおいて，複数層の寄与
度が重複して反映されてしまうことを防ぎ，適切な説
明を生成することができる．また，最も注目度が高い
画素を含む領域は，背景などの不適切な領域と連結し
ていないことが多い．そのため，C1Cにより非連結な
領域を除くことで背景を除去することができる．
本研究の独自性は以下の通りである．
• ブランチ構造や skip connectionを持つモデルに
おける LRPの計算方法を提案する．

• 生成した注目領域を元に，最も注目すべき領域を
選択することで説明の品質を向上させる C1Cを
導入する．

2 関連研究
深層学習モデルの視覚的説明生成に関する研究は広
く行われている [Bach 15, Selvaraju 17, Fukui 19, Ali

22a]．先行研究 [Das 20,Zhang 21b,Joshi 21,Ding 22]

は，視覚的説明生成を含む深層学習モデルの説明生成
に関して，包括的に調査し説明の生成方法ごとに各手法
の分類・比較を行っている．視覚的説明生成タスクにお
ける標準的なデータセットとしては，ImageNet [Deng

09]，CIFAR10，CIFAR100等の標準的な画像分類デー
タセットが使用されている．
視覚的説明生成の手法は，その生成方法によってBack

Propagation (BP)，Perturbation (PER) とその他に
分類することができる．BPは逆伝播時の勾配に着目
して説明を生成する．BPの手法として，LRP [Bach

15,Binder 16]，Grad-CAM [Selvaraju 17]，Integrated
Gradients [Sundararajan 17]，[Chefer 21] 等がある．
[Sundararajan 17]は，感度と実装不変の 2つの公理を
満たすように，勾配を積分して説明を生成する手法であ
る．[Ismail 21]は，重要でない領域の勾配をゼロに近づ
けることでノイズを減らす Saliency Guided Training

を考案した．[Bach 15]は，出力からの逆伝播を利用し
て説明を生成する手法である LRPの基盤となる計算方
法を定義した．また，LSTMや Transformerに対する
逆伝播の計算方法も提案されている [Arras 17,Ali 22a]．
PERは入力に摂動を加えて，モデルの出力の変化から
説明を生成する手法を指す．PERに分類される手法とし
て，LIME [Ribeiro 16]，Shapely Sampling [Lundberg

17]，RISE [Petsiuk 18]等がある．例えば，[Petsiuk 18]
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図 2: 視覚的説明生成タスクの例
は，マスクされた画像と出力の関係から説明を生成す
る手法である．
また，勾配や摂動以外から説明を生成する手法とし
て ABN [Fukui 19]，IA-CNN [Zhang 21c]，IA-RED2

[Pan 21]等がある．ABNは，ブランチ構造として説明
生成専用のモジュールを導入して説明を生成する拡張
性が高い手法であり，Mask A3C [Itaya 21]，PonNet

[Magassouba 21]，LABN [Iida 22]等に応用されている．
サーベイ論文 [Cao 20, Ali 22b] は深層学習を用い
た道路上のクラック検出タスクにおける各手法，標準
データセット，標準評価尺度を包括的に紹介している．
道路上のクラック検出には，Faster-RCNN [Ren 15]や
SSD [Liu 16]等の多くの物体検出モデルが応用されてき
た [Yang 20,Yan 21]．[Yang 20]は，SSDに複数のカー
ネルサイズを持つ畳み込み層を含むReceptive Fieldを
導入し，道路上のクラック検出に応用している．[Yan

21]はDeformable Convolution [Dai 17]を用いてクラッ
クに沿った特徴抽出を行う Deformable SSDを提案し
ている．道路上のクラック検出タスクにおける標準的
なデータセットとしては RDD2022 Dataset [Arya 22]

や Crack500 dataset [Yang 19]があげられる．
提案手法は説明生成専用のモジュール自体がブラック
ボックスであるABNとは異なり，ブランチ構造を持つ
モデルに透明性の高い LRPを導入する．また，cyclic

connection に対応していない LRP とは異なり，skip

connectionやブランチ構造を持つモデルにおける LRP

の計算方法を新たに提案する．

3 問題設定
本論文では，道路上のクラック有無分類タスクに対
する判断根拠の視覚的説明生成を扱う．図 2に道路上
のクラック有無分類問題の例を示す．左図が入力であ
り，右図はモデルの注目領域を入力画像に重畳した画
像である．本タスクでは，モデルの予測に貢献した画
素に注目した視覚的説明が望ましい．
本論文では，画像から道路上のクラックを検出でき
ることを前提とする．標準的な道路上のクラック検出
手法は [Arya 22]にあげられている．本論文における
用語を以下のように定義する:

• クラック領域: 画像における道路上のクラックを
示す領域

本タスクの入力と出力はそれぞれ画像 x ∈ Rc×h×w

とxがどのクラスに属するかの確率の予測値 p(ŷ) ∈ RC

である．ここで，C, c, h, wはそれぞれクラス数，入力
画像におけるチャンネル数，縦幅，横幅を表す．また，
視覚的説明として画像中の各画素に重要度を割り当て
た attention map α ∈ Rh×w を利用する．

4 提案手法
提案手法はブランチ構造を持つ ABN [Fukui 19]に

LRP [Bach 15] を導入して拡張した LRP for Branch

Networks (LRP-BN)である．本論文においては，ABN
をはじめとするブランチ構造を持つモデルに適用可能
な LRPを扱う．本手法で行う拡張は，ブランチ構造を
持つモデルにおける LRPの計算方法を定義したもので
ある．そのため，ブランチ構造や cyclic connectionを
もつ手法一般に適用可能である．提案手法の新規性は
以下の通りである．

• ブランチ構造や skip connectionを持つモデルに
おける LRPの計算方法を提案する．

• 生成した注目領域を元に，最も注目すべき領域を
選択することで説明の品質を向上させる C1Cを
導入する．

4.1 モデル構造
図 3に提案手法のモデル構造および入力におけるRel-

evance Rの計算方法の概略を示す．提案手法は，Fea-

ture Extractor (FE)，Attention Branch (AB)，Per-

ception Branch (PB)の 3モジュールから構成される．
FEは，モデルの注目領域の生成および予測に用いる
特徴抽出をするためのモジュールで，畳み込み層，Batch
Normalization 層，Max Pooling 層と B 個の Bottle-

neck層から構成される．fFEの入力は xで，画像特徴
量 h ∈ Rc1×h1×w1を出力する．ここで，c1，h1，w1はそ
れぞれ画像特徴量のチャンネル数，縦幅，横幅を表す．
ABは説明生成のための f

(1)
AB と，説明と分類を関連

づけるための f
(2)
AB に分かれる．f

(1)
AB は Bottleneck層，

畳み込み層，Batch Normalization層，Max Pooling層
から構成される．f

(1)
ABの入力は hであり，出力は α̃ ∈

Rw1×h1 である．また，予測に重要でない領域を削除
して PBに入力するために，α̃のうち，ハイパーパラ
メータ θα より小さな値を 0として α′ ∈ Rw1×h1 とす
る．f

(2)
AB の入力は hであり，出力は attention lossを

計算するための確率の予測値 p(ŷAB)である．f
(2)
AB は

Bottleneck層，畳み込み層，Batch Normalization層，
Max Pooling層，Global Average Pooling層から構成
される．損失関数に p(ŷAB)を加えることで，ABを分
類に直接関連付けて学習させることができる．その結
果，分類結果と関連する attention mapを生成できる．
PBは hと αの両方を用いて分類を行うモジュール

である．PBはNB−B個のBottleneck層と全結合層か
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図 3: 提案手法のモデル構造および入力における Relevance Rの計算方法の概略図
ら構成される．ここで，NBはバックボーンネットワー
クの Bottleneck層の数を表す．PBの入力はα′ ⊙hで
ある．マスク処理をしたα′とhを掛け合わせることに
より，予測に重要な領域を入力することができる．ま
た，PBの出力はどのクラスに属するかの確率の予測値
p(ŷPB)である．
最終的なモデルの予測は以下の式で表される:

p(ŷPB) = fPB(α
′ ⊙ h) (1)

p(ŷAB) = f
(2)
AB(h) (2)

p(ŷPB) はどのクラスに属するかの確率の予測値であ
り，分類の予測結果を出力するために利用する．また，
p(ŷAB)は分類には直接用いないが，損失関数に導入す
ることで説明の品質を向上させることができる．
4.2 LRPの計算方法
通常の構造，ブランチ構造，skip connectionの 3つ
の構造に分けて，提案手法における LRPの計算方法を
説明する．
4.2.1 通常の構造における LRPの計算方法
通常の構造においては，標準的なLRPの z-rule [Bach

15,Binder 16]を適用して計算する．一例として，R(z)

を zのRelevanceとすると，Linear層における LRPの
計算は以下で表される:

R
(
z
(I)
i

)
=

∑
j

ReLU
(
wijz

(I)
j

)
∑

k ReLU
(
wkjz

(I)
j

)R(
z
(O)
i

)
(3)

ここで，z
(I)
i , z

(O)
i はそれぞれ Linear層の入力，出力に

おける i番目の要素を，wij は Linear層の重みにおけ
る (i, j)要素を表す．しかし，上記の計算方法は cyclic

connectionを含まないモデルに対して提案されており，

ブランチ構造や skip connectionなどの cyclic connec-

tionをもつモデルには対応していない．そのため，本
研究ではブランチ構造・skip connectionにおける LRP

の計算方法を提案する．
4.2.2 ブランチ構造における LRPの計算方法
本モデルにおけるブランチ構造では，p(ŷAB)とp(ŷPB)

それぞれから 2つの Relevance RAB，RPBが計算され
る．そのため，通常の構造とは異なる方法で計算する
必要がある．
まず，RABの計算方法を考える．図 3に示すように，

RPBの入力に用いるα′は f
(1)
ABを通じて計算される．そ

のため，RABの計算方法として，RPBを利用する方法
と，RPBとは独立に計算する方法が考えられる．ここ
で，hのRelenvance R(h)を計算する際，RABとRPB

の両方を利用すると，前者ではRABを介してRPBの
影響が二重に反映される可能性がある．そのため，図 3

に赤・青の矢印で示すように，RPBとは独立に計算を
行う．この計算方法において，ブランチ構造はα′を用
いたゲート構造とみなすことができ，LSTMにおける
LRP [Arras 17]において，ゲート構造を独立に計算す
る方法と一致する．
次に，R(h)の計算方法に関しては，conservation [Bach

15]を考慮してRAB，RPBの和をR(h)とする．ABの
入力が hで，PBの入力が α′ ⊙ hであるため，1 : α′

の重みを付けた和も考えられる．しかし，α′の寄与は
forward計算時に既に含まれているため [Arras 17]，重
複して寄与を考慮しないためにRABとRPBの和と定
義した．以上より，R(h)は以下の式で表される:

R(h) = RAB +RPB (4)

4.2.3 Skip connectionにおける LRPの計算方法
Residual connection [He 15]はサイクル構造を持つ

が，z-ruleにより計算すると skip connectionの影響が
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考慮されない．また，residual blockと skip connection

の和を出力とする点で，並列に計算したアダマール積
を利用する ABNのブランチ構造とは異なる．そのた
め，skip connectionを考慮した LRPを提案する．
まず，residual connection の入出力をそれぞれ xs

，ys と表し，residual block に z-rule を適用して計算
した Relevance，出力の RelevanceをそれぞれR(x)−

，R(ys)と表す．R(h)の議論と同様に，conservationを
考慮すると xsのRelevance R(xs)はR(x)−とR(ys)

の加重和で表すことができると考えられる:
R(xs) = γR(xs)

− + (1− γ)R(ys) (5)

ここで，γはR(xs)
−とR(ys)の比率である．γは xs

と ysを考慮して決定することもできるが，事前実験の
結果良好な結果が得られたため，γ = 0.5とした．
4.3 Relevanceと attention mapを用い

た視覚的説明の計算方法
提案手法においては，Rと α′ を組み合わせ，C1C

を導入することで高品質な説明を生成する．本手法で
説明として使用する αの計算方法を以下で述べる．
R(h) から FE の入力に対する Relevance を計算す

ることで xに対するRelevance Rが得られる．既存の
LRPと同様に，この Rを説明として使用することも
可能である．また，既存のABNと同様にα′も説明と
して使用できる．しかし，単一の説明生成手法を利用
した場合，不適切な領域に注目した説明が生成される
ことがあり，その際に修正の余地がない．一方，本手
法では，LRPと ABNの双方が強く注目した領域をよ
り強調し，高品質な説明を得るためにRと α′ のアダ
マール積を説明に利用する．続いて，背景等の不適切
への注目を防ぐため，C1Cにより最も注目すべき領域
を抽出してαC1Cを得る．C1Cにおいては，R⊙α′を
28× 28に縮小して細かいノイズや不要な情報を削除し
た上で，注目度が高い画素を含む連結領域を抽出する．
Rは多くの場合クラックに最も注目しており，最も注
目度が高い画素を含む領域は背景などの不適切な領域
と連結していないことが多い．そのため，非連結な領
域を除くことで背景を除去することができる．最後に，
αC1C を w × hに拡大して αを得る．
また，損失関数として，以下を使用する:

L = CE(ŷPB,y) + λCE(ŷAB,y) (6)

ここで，y，CE，λはそれぞれ正解ラベル，交差エント
ロピー誤差関数，損失関数の重みを表す．

5 実験
5.1 データセットと実験設定
本研究で扱う視覚的説明生成タスクのための標準デー
タセットは我々の知る限り存在しない．視覚的説明生成

表 1: 実験で用いた設定
エポック 300

バッチサイズ 64

学習率
Feature Extractor

1.0× 10−4

Linear

Attention Branch 1.0× 10−3

最適化 AdamW

タスクにおいては，教師なしセグメンテーションタスク
への応用が可能で，データ数が十分であることが望まし
い．そのため，セグメンテーションのマスクを含まず，
人間によるマスク作成が可能でデータ数が十分なRoad

Damage Detection 2022 Dataset (RDD2022 Dataset)

が最も適している．よって，RDD2022 Datasetの訓練
集合から，画像選択・画像のクロップ・テスト集合作
成の三段階の処理によって RDC Datasetを構築した．
RDC Datasetには，道路画像および，道路上のクラッ
ク有無が付与されたラベルが含まれている．RDD2022

Datasetには，日本・インド・チェコ・ノルウェー・アメ
リカ・中国の合計 6カ国の道路画像が含まれる．この
うち，中国以外の 5カ国は車内から，中国はドローン
やバイクから撮影された画像である．そのため，RDC

Datasetにおいては画角の異なる中国を除いた 5カ国を
採用した．RDD2022 Datasetには，著者らがLabelImg

と Computer Vision Annotation Toolによりアノテー
ションを行ったクラック領域情報が含まれている [Arya

20,Arya 22]．このアノテーションデータに含まれるク
ラック領域に基づき画像を切り出し，クラック有クラ
スの画像を作成した．また，クラック無クラスの画像
はクラック領域を除いた領域からランダムに切り出し
て作成した．この際，クラック無クラスの切り出し後
の縦・横幅はそれぞれアノテーションデータから計算
したクラック領域の縦・横幅分布から選択した．最後
に，縮小・標準化・二値化を行った後に画像間のXOR

を計算することで類似画像を抽出し，類似画像のない
画像群を選択してテスト集合を作成した．これらの処
理により RDC Datasetを構築した．
RDC Datasetは日本・インド・チェコ・ノルウェー・
アメリカの 5カ国で撮影された道路画像を含む．クラッ
ク有クラスの画像は 47,513枚，クラック無クラスの画
像は 30,430枚であった．訓練集合，検証集合，テスト
集合はそれぞれ 66,641，7,405，3,897サンプルを含む．
本研究では，xを 224× 224にリサイズして，反転・
回転・切り抜きによるデータ拡張を行った．訓練集合
はモデルの学習に，検証集合はハイパーパラメータを
調整するために使用した．また，テスト集合はモデル
の性能評価に使用した．
表 1に提案手法における設定を示す．提案手法のパ
ラメータ数と積和演算数はそれぞれ 3200万，92.1Gで
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表 2: 各手法における定量的結果
Method Acc ↑ Insertion ↑ Deletion ↓ ID Score ↑
RISE [Petsiuk 18] 0.958± 0.004 0.373± 0.042 0.054± 0.027 0.319± 0.018

GradCAM [Selvaraju 17] 0.958± 0.004 0.635± 0.026 0.052± 0.011 0.583± 0.020

LRP [Bach 15] 0.958± 0.004 0.528± 0.117 0.301± 0.111 0.227± 0.010

ABN [Fukui 19] 0.957± 0.004 0.358± 0.035 0.090± 0.013 0.268± 0.039

Ours 0.957± 0.004 0.804± 0.005 0.069± 0.006 0.735± 0.007

あった．訓練にはメモリ 11GB搭載GeForce RTX 2080

Ti ， Intel Corei9 9900Kおよび 64GBの RAMを用
いて，モデルの訓練時間および 1サンプルあたりの推
論時間は，それぞれ 3時間および 1.3× 10−3秒であっ
た．検証集合における損失関数の値が 4回連続改善し
なかった場合に早期終了を行った．このとき，検証集
合における損失関数の値が最も低いときのテスト集合
における精度を，最終的な精度とした．
5.2 実験結果
ベースライン手法として，RISE [Petsiuk 18]，Grad-

CAM [Selvaraju 17]，LRP [Bach 15]，ABN [Fukui 19]

を使用した．ABNをベースライン手法とした理由は，
バックボーンネットワークとして ResNetを用いてお
り，ブランチ構造を有する最も標準的な手法のためで
ある．同様に，RISE・GradCAM・LRPは汎用的なモ
デルに適用可能な手法の中で標準的であるためベース
ライン手法とした．
本実験における評価尺度には，Accuracy，Insertion

Score，Deletion Score，Insertion-Deletion Score (ID

Score)を用いた．また，最も標準的な ID Scoreを主要評
価尺度とした．Accuracyは分類タスクにおけるモデル
の標準的な評価尺度であり，Insertion score，Deletion

score，ID scoreは説明生成タスクの標準的な評価尺度
であるため使用した．
Insertion Score，Deletion Score は Insertion 曲線，

Deletion曲線の AUCで計算される．また，ID Score

は Insertion ScoreとDeletion Scoreの差で定義される．
ここで，Insertion曲線，Deletion曲線はそれぞれαを
基に重要な領域を挿入，削除した際の予測の変化を表
す．詳細は以下で定義する．
まず，αの要素を降順に αi1,j1，αi2,j2，· · ·，αiw,ih と
して，集合 An，in，dn を次のように定義する．

An = {(ik, jk)|k ≤ n} (7)

(in,dn) =

{
(xij , 0), (i, j) ∈ An

(0, xij), (i, j) /∈ An

(8)

ここで，nは挿入・削除するピクセル数を表す．in，dnを
モデルに入力した際の出力をそれぞれ y(ins,n)，y(del,n)

とする．このとき，
(
n,y

(ins,n)
C

)
，
(
n,y

(del,n)
C

)
をプロッ

トした曲線が，Insertion曲線，Deletion曲線である．こ
こで，C は xが属するクラスを表す．
表 2にベースライン手法と提案手法との比較に関す
る定量的結果を示す．各手法につき実験を 5回行い，そ
の平均値および標準偏差を示した．また，表 2中の太字
は，統計的に有意な最良値を表す．表 2より，主要尺度
である ID Scoreにおいて，RISE，GradCAM，LRP，
ABN，および提案手法はそれぞれ 0.319，0.583，0.227，
0.268および 0.735であり，提案手法はベースラインの
中で最も高いGradCAMと比較して 0.152ポイント上
回った．また，AccuracyにおいてはRISE，GradCAM，
LRPが 0.958，ABNと提案手法が 0.957で同程度であっ
た．主要尺度である IDスコアと Insertionスコアにお
ける性能差は統計有意であった（p＜ 0.05）．
図 4に定性的結果を示す．(a)列は元画像を示し，(c)-

(e)列はベースライン手法，(f)列は提案手法によって
生成した説明を元画像に重畳した結果を表す．図 4の
1-3行目は説明生成に成功した例で，4行目は説明生成
に失敗した例である．図 4(b)列より，RISEによって
生成された説明は道路上のクラックの周辺に注目領域
を有するが，クラック以外の領域にも強く注目してい
た．また，(b)，(e)列よりGradCAM，ABNによって
生成された説明が強く注目していたのはクラックのう
ちの一部分であった．(d)列より LRPによって生成さ
れた説明は画像中のわずかな画素にのみ強く注目して
おり，ほとんどの領域の注目度が等しく不適切である．
一方で，(f)列より提案手法は道路上のクラック全体に
詳細に注目しており，クラック以外の道路の注目度は
低く，適切な説明を生成している．
図 4の 4行目に示した失敗例について，(c)，(e)，(f)

列より，GradCAM，ABN，提案手法により生成した
説明は全て画像中の右側のクラックに強く注目してお
り，左側にあるクラックに注目できていない，また，(d)
列より LRPによって生成した説明は画像左下のクラッ
クがない領域にのみ注目している．(b)列より，RISE

によって生成した説明は画像全体を注目している．し
かし，中央左の注目度が低い領域にもクラックがある
ため，全てのクラックを適切に注目できていない．上
記より，全ての手法が道路上のクラックを過不足なく
注目できていない．これは，道路が整備されておらず，
クラックの無い道路とクラックの境界が曖昧になって
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(a) Original
(b) RISE

[Petsiuk 18]

(c) GradCAM

[Selvaraju 17]

(d) LRP

[Bach 15]

(e) ABN

[Fukui 19]
(f) Ours

図 4: 各手法における定性的結果

表 3: 被験者が作成した正解マスクと各手法によって生成した説明との IoU計測実験の結果
RISE [Petsiuk 18] GradCAM [Selvaraju 17] LRP [Bach 15] ABN [Fukui 19] Ours

IoU ↑ 0.167± 0.004 0.141± 0.002 0.111± 0.000 0.113± 0.107 0.184± 0.004

おり，判別が難しいことが原因だと考えられる．
最後に，被験者実験として，人間が作成したクラッ
クのマスクと，ベースライン手法および提案手法が生
成した説明の IoUを計測した．まず，被験者 4人がそ
れぞれ異なる 50サンプルについてクラック領域を示し
たマスクを作成し，合計 200サンプルのマスクを得た．
これを正解マスクとして，表 3に，正解マスクと各手
法によって生成した説明との IoUを示す．各手法につ
き実験を 5回行い，その平均値および標準偏差を示し
た．また，表 3の太字は最良値を表す．表 3より，IoU

において，RISE，GradCAM，LRP，ABN，および提
案手法はそれぞれ 0.167，0.141，0.111，0.113および
0.184であり，提案手法はベースライン手法の中で最も
高い RISEと比較して 0.017ポイント上回った．これ
らの結果より，提案手法が最も正解マスクと類似した
説明を生成できていると示唆される．

6 おわりに
本論文では，道路上のクラック有無分類問題におけ
る判断根拠の視覚的説明生成を扱った．提案手法によ
る貢献は以下である．

• Skip connectionやブランチ構造を持つモデルに
おける LRPの計算方法を提案した．

• 生成した注目領域を元に，最も注目すべき領域を
選択することで説明の品質を向上させる C1Cを
導入した．

• 本タスクの標準的な評価尺度である Insertion Score，
ID Scoreにおいて，提案手法がベースライン手
法を上回った．
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